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JUSTIFICATION  
Sensor technologies and automated insect identification models were developed for the 

control of insects that spread human diseases. Our cooperator Dr. Keogh, a computer scientist at UC 
Riverside, has recently developed inexpensive pseudo-acoustic opto-electronic sensors and 
accompanying classification algorithm that can accurately classify multiple species of mosquitoes that 
vector pathogens such as Zika and West Nile virus (Chen et al. 2014) by using wing-beat frequencies, 
daily activity patterns, and geographical distribution. The ability to remotely capture real-time 
measurements and forecast insect density in a spatiotemporal manner allows for efficient and precise 
insect control response that could prevent public health crisis. The overall goal of this proposal was 
to adopt and translate this technology to optimize insect pest management programs and benefit 
agricultural stakeholders. We proposed to develop and ultimately deploy opto-electronic sensors that 
can accurately identify Spotted Wing Drosophila (SWD) and differentiate it from other insect 
inhabitants of cherry orchards.  

SWD is a highly invasive pest species that cause up to $500 million in annual losses in the 
western United States because they oviposit into marketable, ripening fruit (Goodhue et al. 2011, 
Wiman et al. 2016). An insect sensor utilizing wing beat frequency for classification can theoretically 
be applied to identify any flying insect, but the substantial economic loss caused by SWD warrants 
the prioritization of optimizing this new technology for its control. It is important to stress that the 
electronic sensor technology we proposed to develop and optimize for SWD was not simply a 
modernized version of insect traps currently used for population monitoring. Besides supplanting 
conventional monitoring tools and greatly reducing the time necessary to process trap contents, we 
anticipated that the capability of the sensors to classify insects in real-time will revolutionize pest 
management research and lead to developments in precision agriculture. For example, current 
monitoring tools lack spatial and temporal resolution as conventional traps do not provide time-
stamps for insect catches. Our sensors on the other hand can ultimately be connected to a central 
network and were capable of reporting real-time movement between crop and non-crop host plants, 
providing opportunities to target SWD for sprays at times when they are at maximum density in non-
crop plants. This can reduce insecticide residues on crops, a major concern for export markets.  
 
OBJECTIVES 
 Objective 1: 

Measure wing beat frequency and circadian activity pattern of SWD to improve insect 
identification algorithm. Opto-electronic sensors will be installed in insect cages that house SWD to 
measure wing beat frequency and daily activity patterns simultaneously. Since biological parameters, 
e.g. sex, age, and seasonal morphology, may alter wing beat frequency and activity patterns, we plan 
to evaluate male and female SWD, different ages of SWD, and summer and winter forms of SWD. 
Various abiotic factors can also affect wing beat frequencies so we will evaluate recordings in a range 
of environmental conditions.  
 
Objective 2: 

Field recording to assess opto-electronic sensor and insect identification algorithm. We will 
deploy opto-electronic sensors housed in McPhail traps to assess the capability of the sensors to 
accurately identify SWD from other inhabitants of Cherry orchards. 
 
METHODS 
Objective 1: Refining insect identification algorithm using opto-electronic sensors 
Overview: In order to automate the process of insect identification based on wing beat frequency,   
an algorithm was created and refined to take into account biotic and abiotic factors that may result in 
changes to insect wing beat frequency and activity pattern. Our cooperators have previously created 
an algorithm to accurately identify insects down to species and sex using wing beat frequency in 
controlled environments, which they have tested on mosquito species (Chen et al. 2014). To refine 



this algorithm for SWD and use in the field, we recorded wing beat frequency of SWD and other 
insects commonly found in cherry orchards different environmental conditions (temperature, light 
cycle, humidity, etc.). The data acquired from these species in controlled environments were then 
incorporated in insect identification models to enable refinement of the algorithm.  
 
Collection of data for insect identification algorithm refinement 

Flies of a known species and sex (N=60) were placed into a modified McPhail trap outfitted 
with an opto-electronic sensor ring and connected to a recording device. This setup was then placed 
into a Digitherm incubator (Tritech Research) that allowed us to control the environmental 
conditions. Using this setup, we recorded wing beat frequency data in different temperatures, 
humidity, light-dark cycles with different photoperiods, etc. as well as wing beat frequency of 
different species and sexes. The data collected in these controlled environments were visualized using 
analysis programs using MATLAB (Mathworks). General trends were visualized using these analysis 
tools. Comparison between SWD and the closely related Drosophila melanogaster in controlled 
conditions showed distinct wing beat frequency patterns. Based on live capture in field in CA, we 
identified several closely related Drosophila species such as D. simulans, D. biarmipes and D. tristis.  
Recording using these different species and other relevant species present in cherry orchards were 
generated in order to refine the algorithm and improve identification accuracy.   
 
Refinement of insect identification algorithm 

Previously our cooperators have created an insect classification algorithm which they have 
used to accurately identify disease carrying mosquito species based on wing beat frequency alone 
(Chen et al. 2014). When more species were added or environmental conditions were changed the 
classification model was less accurate. Due to the large diversity of species present in the field and 
the heterogeneity of environmental conditions, it is important to have accurate classification 
established on a wide range of fluctuating parameters and species to mimic field scenarios. By 
creating a training dataset using the data we collected from Drosophila flies in various conditions, we 
were able to “train” the classification model to accurately identify insect pests in vastly different 
environments. We have already “trained” the insect classification model based on geographical and 
circadian rhythm data to increase the accuracy of the model in identifying mosquitos down to the 
species level. By “training” the insect classification model to correctly identify insects using a larger 
number of variables we were able to increase the accuracy of our identification process in the field. 
This was an iterative process of testing and refinement. 
 
Objective 2: Assessment of insect identification algorithm and field deployment of sensors 
Overview: With current monitoring methods, it is extremely time consuming to monitor insect pest 
species in the field because it requires the presence of a specialist to manually identify individuals. In 
addition, the time lapse between trapping and identification constitutes an important limitation to 
initiate a quick and appropriate response to slow down crop infestation. Our goal in refining the insect 
identification algorithm was to develop an automated identification process that is easier and faster to 
identify insect pests compared to current pest capture and identification processes. We assessed the 
ability of the sensors to correctly identify and monitor pest species both spatially and temporally in 
and around SWD habitats in CA.  
 
Deployment of insect sensors in the field 
 Once the classification algorithm was found to be highly accurate (>99%), we deployed our 
system in SWD habitats. We used baited McPhail traps outfitted with sensors in the opening at the 
bottom to record the wing beat frequency and relevant environmental variables (temperature, 
humidity, time, etc.) of any insect that enters the trap and identifying them in real time. By deploying 
multiple trap/sensor setups, we were able to track the movements of SWD throughout the day, e.g. 
from crop to non-crop hosts. We envision this will allow for the development of more precise 



strategies of pest management than are possible through conventional monitoring techniques using 
traps and manual identification. The automated process of insect identification also means that there 
will be far less processing time required to identify flies allowing growers and researchers to respond 
to the presence of pests as soon as they arrive and are detected in their fields.  
 
RESULTS: 
Objective 1:  
Hardware optimization for insect sensors 

We successfully went through several iterations of design and testing of the sensors. We have 
converged on a solution that we feel is robust, maintainable and cheap to produce in large numbers. 
Briefly, we use IR emitters and phototransistors working at a wavelength of 940nm, which is outside 
the visible light spectrum. Our emitters (OSRAM SFH 4043) and phototransistors (Everlight PT19-
21C) use around ~20mA. There may be some other low power emitters and phototransistors out there 
that we can used to further improve our design in the future. We are currently using a cortex M4 
MCU, which runs at 80Mhz. This chip has 32K of flash and 2K of RAM. It consumes around 5.5mA 
when running at 8Mhz but we can put it to sleep when there is no activity, in sleep mode it only 
consumes few micro amps. For transmission we are using Long Range Wide Area Network 
(LoRaWAN) technology.  LoRaWAN is a wireless standard designed for long range communications 
at a low bit rate on a very low power budget. We use Semtech SX1272 LoRa module which has a 
range of 2 miles in non-line-of-sight environment and up to 15 miles in line-of-sight environment.  It 
can achieve data rates up to 50 kbps. SX1272 consumes ~15mA while transmitting/receiving and a 
negligible power (1.5 uA) in idle state. We have started to install solar panel to the sensor unit, so that 
the sensors can be left unattended in the field for weeks at a time (Figures 1 to 3 and Figure 5).  
 
Development of species ID algorithm 
 Since the completion of the activity and wing beat frequency recordings for 5 different 
Drosophila species (D. simulans, D. tristis, D. suzukii, D. biarmipies, D. melanogaster) at various 
temperature and photoperiod conditions (Figure 4), we have collected more than one million insect 
“encounters”, in diverse conditions of light, temperature, humidity, life-stage, species, sex. Using this 
data, we have built the state-of-the-art classification model for insect classification, which is invariant 
to environmental conditions. For example, we can now train a model say in our dry hot California 
research station at ten meters above sea level and be confident that the model will generalize to the 
cooler humid conditions. Just a year ago, this environmental variability would cause our models to 
fail to generalize, drastically reducing our accuracy. Now the accuracy of the resulting species ID 
algorithm is easily over 90% accuracy and will continue to improve as we continue to feed the 
algorithm with data collected in the field. 
 
Objective 2:  
Field deployment and testing  
 
For the purpose of testing the power and communication modules, we leveraged a field setup that was 
already in place to monitor Navel Orange Worm (NOW). We can then easily adopt the same setup for 
use with SWD monitors. We outfitted the sensors with solar panel and cellular data transmission for 
remote sensing. A first field trial was performed in an almonds orchard located in CA from May to 
September 2019 to trap (Figure 5). NOW can be trapped using sticky card loaded with species 
specific pheromone allowing us to collect and validate information for a given species before 
increasing complexity by adding more species to the system.  During this test we were able to 
successfully validate:  
 

1) the autonomy of the sensors. 
2) the ability of the sensors to remotely send information to the database. 



3) the accuracy of the system to match insect counts recorded by the sensor with the number of 
insects collected on sticky trap.  

 
Indeed, the solar panel efficiently ensured full autonomy of the system as it provided enough power to 
sustain the sensor during the 4 months of the trial without any intervention required from us to 
recharge the battery. Data were send remotely using cellular signal to an online database where insect 
counts as well as environmental parameters associated (T°C, Humidity, Pressure, Light cycles...) 
were readily accessible. Finally we observed a strong correlation between information collected from 
the sensor and number of insects on the sticky card attesting of the efficacy of the sensor to detect 
pest pressure in real time (Figure 6). 
 
Sensors to monitor for SWD (Figure 7) are currently deployed in the UC Davis orchard of Wolfskill. 
Traps are filled up with yeast-sugar solution, an attractive lure for Drosophilds allowing us to validate 
the capability of the sensor to accurately identify the presence of SWD among other species of fruit 
flies. Given the current percentage of accuracy provided by the algorithm we are confident that SWD 
recordings will result in high accuracy identification. Results from this trial are expected to set the 
stage for field application in the upcoming growing seasons. We hope to offer growers and PCA 
unprecedent tools to optimize insect pest management programs. Users interested in testing the smart 
sensor in their own crop are invited to request a demo by contacting the PI Joanna Chiu 
(jcchiu@ucdavis.edu) or by visiting the Farmsense website (www.farmsense.io).  
 
LITERATURE REVIEW: 
 There have been some efforts in identifying insects based on recordings of their wing beat 
frequencies and these attempts date back to the advent of commercially available computers and 
audio recording devices (Reed et al. 1942, Foster and Robinson 1991, Moore and Miller 2002, Raman 
et al. 2007). These attempts have not been successful in creating an automated and accurate 
identification process based on recordings of wing beat frequencies. In most studies, wing beat 
frequency has been recorded using acoustic microphones, which are susceptible to noise from the 
wind as well as any ambient noise in the environment (Reed et al. 1942, Mankin et al. 2006, Raman et 
al. 2007, Villarreal et al. 2017). This made it very difficult to get quality recordings of insect wing 
beat frequency with acoustic recording devices. Because of this difficulty, wing beat frequency data is 
sparse, low quality, and typically recorded in unnatural conditions (Moore et al. 1986). Despite the 
sparseness and low quality of available insect wing beat frequency data, some researchers have 
attempted to create insect identification models with 300 or less recordings (Moore 1991). It is 
difficult to create models with such sparse data and this will cause the models to have very low 
accuracy in identifying insects (Banko and Brill 2001, Halevy et al. 2009). This is compounded by the 
fact that most attempts at classification of insects by recording wing beat frequency have used just 
one variable (wing beat frequency). Other environmental factors that cause wing beat frequency to 
change have also been ignored (Chen et al. 2014). By using pseudo-acoustic opto-electronic sensors, 
we will be able to record higher quality data. We will also be able to record larger volumes of data in 
more natural conditions than has been possible in the past, which will allow us to create a highly 
accurate insect classification model that can be used to identify SWD and differentiate it from other 
species in the field.  
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FIGURES 
 

 
Figure 1: Top view of the modified Mcphail trap outfitted with the LED sensor ring, showing 
emplacement for solar panel. 
 
 
 

 
Figure 2: Bottom view of the modified Mcphail trap showing the battery unit, the data acquisition 
unit, the environmental measurement unit, and the entrance of the trap. 
 



 
Figure 3: The modified Mcphail trap holding the sensor unit in a field setting. The antennae for 
transmitting remote sensing data is shown. 
 
 
 

 
 
 
Figure 4: Temperature and photoperiod conditions for wing beat frequency recordings. Conditions 
marked with pink have been completed. D. simulans (D. sim); D. tristis (D. tris); D. suzukii (D. suz); 
D. biarmipes (D. biar); D. melanogaster (D. mel). 
 
 
 
 



  

 
 

Figure 5: Experimental setup for field testing on NOW 
 
 
 

 
 

Figure 6: Insect count comparison between Sensor vs Sticky trap. 
 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 7: Field deployment of the sensors monitoring for SWD 
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EXECUTIVE SUMMARY 
Project Title:  Electronic sensors to capture spatiotemporal population density of SWD 
KEY WORDS:  Spotted Wing Drosophila, Drosophila suzukii, remote sensing, insect identification 
 

Spotted Wing Drosophila (SWD) is a highly invasive pest species that has now established 
itself as a keystone pest of U.S. fruit crops, including cherries. SWD oviposits into marketable, 
ripening fruits, leading to significant annual crop and economic losses. The overall goal of this 
proposal was to adopt electronic sensor technologies and develop automated insect identification 
models to enable remote and real-time SWD identification and monitoring to support management 
programs and IPM research efforts.  Our cooperator Dr. Keogh, a computer scientist at UC 
Riverside, has previously developed inexpensive pseudo-acoustic opto-electronic sensors and 
accompanying classification algorithm that can accurately classify multiple species of mosquitoes that 
vector pathogens such as Zika and West Nile virus by using wing-beat frequencies, daily activity 
patterns, and geographical distribution. An insect sensor utilizing wing beat frequency for 
classification can theoretically be applied to identify any flying insect. We therefore proposed to 
optimize electronic sensor technologies for SWD identification. It is important to stress that the 
electronic sensor technology we proposed to develop and optimize for SWD is not simply a 
modernized version of insect traps currently used for population monitoring. Besides supplanting 
conventional monitoring tools and greatly reducing the time necessary to process trap contents, we 
anticipated that the capability of the sensors to classify insects in real-time will revolutionize pest 
management research and enable precision agriculture. For example, current monitoring tools lack 
spatial and temporal resolution as conventional traps do not provide time-stamps for insect catches. 
Our sensors on the other hand can ultimately be connected to a central network and were capable of 
reporting real-time movement between crop and non-crop host plants, providing opportunities to 
target SWD for sprays at times when they are at maximum density in non-crop plants. This can 
reduce insecticide residues on crops, a major concern for export markets.  
 
Key products of project:  
1. Software: We have collected more than one million insect “encounters” in diverse conditions of 
light, temperature, humidity, life-stage, species, sex, and completed the development of SWD species 
ID algorithm. 
2. Hardware: We have successfully validated the solar power and remote communication modules of 
the sensor. 
3. Field trials: We have initiated field testing of the SWD system and will continue repeated iterations 
of trial and optimization cycles. Measurements of field encounters will continue to improve the 
species ID algorithm. Demo units can now be requested.  
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