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ORIGINAL OBJECTIVES 

 

1) To determine environmental predictors of SWD occurrence and fecundity such as altitude, 

monthly temperatures, host plant phenology, presence of pollinator refuges, and level of 

urbanization in cherry orchards and unmanaged areas.  

2) To provide an improved risk assessment tool to improve the efficacy/accuracy of scheduling and 

frequency of insecticide applications in cherry orchards based on annual environmental and site 

variability.  

 

The primary objective of this proposal was to determine the dispersal capabilities of SWD in no-

agricultural areas where the pest is known to thrive. This projects falls within the research priority 

topic “SWD: Predicting location and intensity of infestations”. We conducted this work in the Mt 

Hood National Forest, and rural/urban areas of Hood River and Wasco counties.  

 

This study also aimed to help identify single nucleotide polymorphism (SNP) markers that can be 

used to develop genotyping assays to examine dispersal between geographical sites. SNP genotyping 

should be able to shed light on the origin of these flies early in the growing season to answer the 

following questions: Did they migrate from warmer low-elevation areas? Or are they overwintering 

populations from the previous season?  

 

Together, an analysis of environmental variables and the identification of SNP markers will help 

pinpoint wild sink-and-source sites, i.e., spots where SWD can overwinter and then migrate from 

agricultural areas to wild unmanaged areas, and determine when SWD is most likely to be found in 

these areas.  

 

 

SIGNIFICANT FINDINGS 

• We found that environmental predictors of SWD abundance vary depending on winter 

temperatures. In years with cold winters, degree days (DD) accumulated at the end of the 

spring equinox (June 20), along with average maximum temperature during winter, and 

accumulated precipitation during winter were the strongest predictors of total SWD collected 

in June. In years with mild winters, site setting (urban/agricultural/forest) and winter 

precipitation were the best (but still weak) predictors of SWD abundance. 

• Tracking winter temperatures (for example, number of days with minimum temperatures 

below 23F) are an important tool for making early spray management decisions. However, 

there is still a lot of unexplained variability in the data, and environmental predictors do not 

provide clear thresholds.  

• Live traps were not effective as monitoring tools. In general we found more abundance of 

SWD in forest sites compared to orchards, but it is not clear whether elevation or host fruit 

had an effect. 

• SWD was reared from wild hosts such as huckleberries and thimbleberries.  

• Future molecular work can help disentangle whether forest and orchard populations are 

isolated, or migrate between sites.  

 

RESULTS AND DISCUSSION 

 

1) Which environmental factors best predict the total number of SWD trapped in various areas in 

Hood River and Wasco counties during 2017 and 2018? 

 



To answer this question, we used the data from the trap network deployed by OSU extension in 2017 

and 2018 in Hood River and Wasco counties. As an assessment of risk infestation, the response 

variable selected was total number of SWD collected in each trap during June of each year.  

For each trap, we selected the nearest weather station from the U.S pest website  

(http://uspest.org/cgi-

bin/ddmodel.us?sta=E9560&mdt=ins&spp=swd&cal=S1&tlow=50&thi=88&stm=1&std=1&styr=18

&enm=9&end=20&cel=0&fcast=1&spyr=0&shd=1&mkt=0&mkg=1&ipc=1&evnts=3) 

From each weather station, we extracted the following information: 

- Average minimum temperature during winter solstice 

- Average maximum temperature during winter solstice 

- Average minimum temperature during spring equinox 

- Average maximum temperature during spring equinox 

- Total number of days with temperatures below 23F (-5°C) during winter solstice 

- Total number of days with temperatures below 32F (0°C) during winter solstice 

- Degree-days (DD) accumulated at the end of winter solstice (on March 20, using lower threshold 

of 50F, 10°C) 

- Degree-days (DD) accumulated at the end of spring equinox (on June 20, using lower threshold 

of 50F, 10°C) 

- Total precipitation during winter solstice 

- Total precipitation during spring equinox 

- Elevation 

 

To reduce the number of environmental variables that might be correlated, we performed a principal 

component analysis (PCA). This tells us how each variable is associated with each other, visualized 

by location (Hood River / Odell / Parkdale / The Dalles / Dallesport / Mosier). 

 
Figure 1. Biplot of principal component analysis of environmental variables.  
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In this case, the first two components explain 83% of the variation (PC1 + PC2, Fig. 1). Variables that 

point in similar (or directly opposite directions) are highly correlated, and therefore redundant. For 

instance, Tmax_winter (average maximum temperature during winter solstice) is positively correlated 

with Tmin_winter (average minimum temperature during winter solstice), and inversely correlated 

with number of days below freezing, and number of days below 23F. In case of highly correlated 

variables, it is more adequate to choose ones that have higher loadings on the first principal 

component.  

 

Table 1. Loadings of each variable on principal components.  

  Tmin_winter Tmax_winter Tmin_spring Tmax_spring 

PC1 -0.3146984 -0.3296766 -0.2972291 -0.3205501 

PC2 -0.3806404 -0.2416034 0.133411 0.2904705 

  days_below_5_winter days_below_0_winter DD_winter DD_spring 

PC1 0.2881748 0.3088001 -0.3361714 -0.3434887 

PC2 0.4302847 0.3631645 -0.031987 0.1935672 

  precipitation_winter precipitation_spring elevation_m   

PC1 0.2467444 0.2771615 0.2325543   

PC2 -0.432349 -0.3223878 -0.2195105   

 
 

After determining the loadings of each variable in the PCA, we selected a smaller number of variables 

to build a general linear model (GLM) that best predicted abundance of SWD collected during the 

month of June. In this case, we selected the environmental variables “average maximum temperature 

during winter solstice”, “precipitation during winter solstice” and “degree-days accumulated during 

spring equinox”.  

 

In addition to the weather data extracted from the stations, we also selected the following categorical 

variables from each trap site: 

- Fruit host (cherry / blackberry / peach) 

- Setting (agricultural / urban / forest) 

- Management (managed / unmanaged) 

- Lure type (Apple cider vinegar ACV / ACV+ Trece commercial lure).  

 

Using the Akaike criterion information (AIC) on environmental and categorical variables, we built 

the model that best described the abundance of SWD collected in June by dropping variables that did 

not contribute to data fit. Data was analyzed separately for 2018 and 2017. Due to the high number of 

traps without SWD in 2017, we used a zero-inflated Poisson model, and for 2018, we used a general 

linear model.  

 

For 2017, the best model was: 

Total SWD June = 0.037(DD spring) + 0.009(precipitation winter) – 2.76(Tmax_winter) – 5.87.  

The strongest predictor in this model was DD spring (p = 0.04) 

 

For 2018, the best model was: 

Total SWD June = 8.79(setting forest) + 0.85(setting urban) + 0.009(precipitation_winter) +3.10 

However, all these variables were weak predictors and there is a lot of unexplained variability.  

 

Why were the models so different in 2017 and 2018? 

 



Let’s have a look at the relationship between the predictors and SWD (Figure 2). There is a clear 

separation between 2017 and 2018 data in variables such as mean minimum and maximum 

temperatures during winter (2017 having lower values, Fig. 2a, b), and number of days below 23F in 

winter (more days in 2017, Fig. 2e). This suggests that, in years with cold winters, the best predictor 

of SWD abundance was degree days (DD) accumulated during the spring equinox (until June 21, Fig. 

2h). But in years with milder winters, the accumulation of DD will not be a reliable predictor of SWD 

abundance, and instead, the spatial setting (urban/ forest / agricultural, Fig 2n) and the precipitation 

during winter (Fig. 2i) can better predict where SWD will be more abundant.  

 

A predictor that is easy to track in terms of quantifying how cold a winter is as it progresses is 

number of days below 23F. There was a clear cut difference between both years; across the region in 

2017 there were at least 12 days below 23F in winter, while in 2018, there were some sites with zero 

days below 23F in winter. As winter progresses, the low temperatures can be tracked in local weather 

stations, and once there are more than ~10 days with temperatures below 23F, then DD accumulated 

in spring will be more important in predicting SWD abundance. 

 

There is not a clear-cut threshold on how spring DD can affect SWD abundance in cold years, or 

winter precipitation in mild years. After a cold winter, sites with less than 400DD accumulated by the 

end of the spring equinox (~ 20 June), will likely have very low occurrence of SWD. After a mild 

winter, sites with more than ~7in (200mm) of rain accumulated during winter solstice (until March 

20), or sites near forested areas may be at higher risk of SWD infestation. It is important to emphasize 

that there is still a lot of variation unaccounted for that none of these variables can predict, so there is 

inherent risk in relying on these models.   

 

Implications for SWD management 

 

This study highlights the importance of keeping track of environmental conditions when assessing 

risk of SWD infestations. We found that in years with cold winters, it could be possible to skip early 

insecticide sprays, and it is important to keep track of DD accumulation during spring to make 

application decisions.  In years with milder winters, DD accumulation during spring becomes an 

unreliable predictor for SWD abundance.  

 

 

 



 

Figure 2. Environmental and categorical variables plotted against total number of SWD collected in June in 2017 and 2018 in Hood River and 

Wasco counties.  
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2) Which environmental factors best describe the abundance of SWD in unmanaged forest areas 

(Mt. Hood national forest)? 

 

To collect in Mt. Hood national forest we deployed live traps at 9 sites on the northern and southern 

slope during summer. We measured the following variables: 

- Elevation 

- Fruit host (huckleberry / thimbleberry / native blackberry) 

- Average maximum temperature during summer solstice 

- Average minimum temperature during summer solstice 

 

Additionally, we collected ripening fruit from each site at various times during the summer, and 

reared SWD from them. We also measured brix from each fruit, to determine if there was a 

relationship between brix and fruit infestation.  

 

To be able to collect live flies for SNP molecular analysis, the traps used for the forest sites were 

different from the traps used in the Hood River/ Wasco trapping network, and did not have a 

drowning solution. We had tested these traps previously in 2016, but this year, we found that these 

traps were not very effective to collect SWD. As a result, many sites had low or zero catch, and we 

were not able to perform analyses to select the best predictive variables. The data presented here is 

only descriptive, and summarizes what we found in orchard and forest areas with live traps (Table 2). 

Data from live traps should not be used for monitoring or analysis purposes.  

 

Table 2. Total SWD caught in live traps between 27 June and 17 Oct 2018 in various forest and 

orchard sites.  

Elevation 

(ft) 

Setting Total SWD 

traps 

292 Orchard 0 

394 Orchard 0 

528 Orchard 0 

643 Orchard 0 

669 Orchard 0 

758 Orchard 0 

761 Orchard 2 

810 Orchard 0 

866 Orchard 2 

909 Orchard 8 

925 Orchard 1 

1089 Orchard 0 

1204 Orchard 0 

1263 Orchard 0 

1483 Orchard 3 

1486 Orchard 1 

1732 Orchard 0 

1880 Forest 2 

2008 Orchard 0 



2024 Forest 2 

2028 Forest 2 

2211 Orchard 2 

2618 Forest 0 

3025 Forest 50 

3196 Forest 10 

3563 Forest 3 

3957 Forest 0 

4518 Forest 0 

4669 Forest 2 

 

We reared SWD from huckleberry (Vaccunium ovalifolium) and thimbleberry (Rubus parviflorus) 

collected from Mt. Hood NF. There was no relationship between location or fruit brix on the number 

of SWD reared from forest berries.  

 

Female flies collected alive in these traps during 2018 will be sent to UC Davis for SNP analysis.  

  



EXECUTIVE SUMMARY 

 

We aimed to identify which environmental factors best predict the total number of SWD trapped in 

various areas in Hood River and Wasco counties during 2017 and 2018. To answer this question, we 

used the data from the trap network deployed by OSU extension in 2017 and 2018 in Hood River and 

Wasco counties. As an assessment of risk infestation, the response variable selected was total number 

of SWD collected in each trap during June of each year. For each trap, we selected the nearest 

weather station from the U.S pest website. From each weather station, we extracted multiple 

environmental variables.  

 

After performing a principal component analysis to eliminate redundant variables, we selected three 

environmental predictor variables: 1) “average maximum temperature during winter solstice”, 2) 

“precipitation during winter solstice” and 3) “degree-days accumulated during spring equinox”. 

Additionally, we selected the following categorical variables: 

- Fruit host (cherry / blackberry / peach) 

- Setting (agricultural / urban / forest) 

- Management (managed / unmanaged) 

- Lure type (Apple cider vinegar ACV / ACV+ Trece commercial lure).  

 

The models that best described SWD collected during June varied by year. In 2017, the best 

predictors were DD accumulated at the end of spring equinox, mean maximum temperature during 

winter solstice, and cumulative winter precipitation. In 2018, environmental predictors were weak, 

but the best ones were setting (forest/agricultural/urban), and cumulative winter precipitation.  

 

The difference between predictors in both years is likely due to differences in winter temperatures. 

For instance, there was a clear cut difference in number of days below 23F between 2017 and 2018. 

In years with cold winters, DD spring accumulation can provide information about SWD in late 

spring/early summer, but in years with milder winters, DD spring is not a reliable predictor.  

 

Keeping track of winter temperatures in local weather stations as winter progresses is a useful tool to 

estimate which environmental predictors will become important to predict SWD abundance. We 

recommend taking note of how many days below 23F have occurred, and then keeping track of spring 

DD. There is not a clear-cut threshold on how spring DD can affect SWD abundance in cold years, or 

winter precipitation in mild years. After a cold winter, sites with less than 400DD accumulated by the 

end of the spring equinox (~ 20 June), will likely have very low occurrence of SWD. After a mild 

winter, sites with more than ~7in (200mm) of rain accumulated during winter solstice (until March 

20), or sites near forested areas may be at higher risk of SWD infestation. It is important to emphasize 

that there is still a lot of variation unaccounted for that none of these variables can predict, so there is 

inherent risk in relying on these models.   

 

We used live traps in some forest and orchard sites to be able to preserve flies for molecular analyses, 

but live trapping was very inefficient and unreliable for monitoring and analysis. It is unclear whether 

flies migrate between these sites; future molecular SNP analyses can help determine whether these 

are separate populations.  

 


