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Budget 1  
Primary PI: Joe Boomgard-Zagrodnik 
Organization Name: Washington State University   
Contract Administrator: Anastasia Mondy 
Telephone: 916-897-1960    
Contract administrator email address: arcgrants@wsu.edu 
 

Item 2020 2021 2022 
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Footnotes: 
1 Salaries include 2 months of postdoc time at AgWeatherNet in year 1 and 4 months in years 2-3, 1.5 months of research 
associate time in the Kalcsits lab (years 1-3), 1 month of field meteorologist time at AgWeatherNet (years 1-3), and 1.75 
months of systems analyst/programmer time (years 1-3).  
2 Benefit rates are budgeted for 35%. 
3 Equipment includes 8 weather sensors, 8 soil moisture sensors, and 2 instrument towers.  
4 Travel budgeted for travel to field sites, meetings with collaborators and presentation of results at industry winter meetings 
in Washington State. 
  



OBJECTIVES  
 

1) Measure the effects of irrigated orchard canopies on meteorological measurements relative to 
standard unobstructed, unirrigated meteorological sites.   

 
2) Construct statistical models that estimate the magnitude of orchard effects on air temperature, 

relative humidity and wind speed as a function of weather conditions and irrigation.   
 

3) Develop and implement algorithms in AgWeatherNet to dynamically correct for orchard 
effects and support orchard-specific delivery of weather data, forecasts and decision-support 
tools.  

 
Progress on objectives was consistent with the timeline reported in the proposal submitted in fall 
2019:  
 
Year 1 –  
Goal: Identify paired sites, acquire instruments, initiate field measurements for both paired Atmos 41 
stations and met towers. Restructure database as needed to secure Tier 3 station data.  
Progress: Deployed 8 sets of paired ATMOS-41 stations in early summer 2020 which continue to 
operate. Completed two weeks of met towers observations at Sunrise research orchard in early August 
2020. Completed database restructuring to support Tier 3 station data.   
 
Year 2 –   
Goal: Complete full year of field data acquisition, initiate modeling, code framework required to 
implement transformation models.  
Progress: Data collection has continued at existing paired stations from 2020. Additional stations 
have been added to more carefully target (1) netting; (2) within-orchard variability. Research met 
towers have been moved to an Allen Bros site and are currently collecting data. Irrigation event 
detection methodology has been completed.   
 
Year 3 –   
Goal: Continue field data acquisition as needed, complete modeling, complete coding to automate 
model implementation in the AWN system.  
Updates: Emphasis has been to move away from transfer modeling, since data shows there is 
considerable variability between orchards and  
 

SIGNIFICANT FINDINGS  
 

1) Microspray and overhead irrigation effects: 
a. Microspray and overhead irrigation events are best detected by the rain gauge on an 

in-orchard weather station. Leaf wetness sensors are unreliable due to orchard sprays 
that coat the sensor and soil moisture detection lags events by at least a few hours.  

b. The dynamic effect of microspray cooling might be greater in weak canopies than 
strong canopies.   

 
2) Orchard effects have a seasonal cycle: 

a. Orchards are cooler and moister in summer/fall as a result of irrigation, evaporative 
cooling, and evapotranspiration. Both daytime and nighttime temperatures are cooler 
in orchard. 



b. Orchard effects are generally less but more variable depending on the orchard in 
wither/spring.  

c. In-orchard stations generally have lower wind speed in the summer (relative to out-
orchard stations) and higher wind speed in the winter—presumably due to the effect 
of wind machines. 

 
3) Orchard effects are highly dependent on orchard configuration, station siting, and 

management activities. But overall: 
a. Overhead netting causes the same effects as irrigation (cooler/moister in summer), 

but the effects are subdued relative to microspray cooling. The weaker humidity 
effect may be beneficial for disease prevention.  

b. The stronger Smart Orchard 2 canopy had a >50% greater orchard effect than the 
weak canopies this past summer.   

c. The orchard effect will appear to be stronger if the in-orchard weather station is 
located below the canopy (at a lower height than the paired outside-orchard station).  

 

METHODS  
 
Methods from the original proposal submitted in winter of 2020 are summarized below. Changes to 
the methods are summarized at the end of each objective.     
 
Objective 1 – Observations 
 
Standard meteorological observations 
 
AWN has begun collecting observational data under a variety of orchard conditions in order to build a 
long-term database of in-orchard stations paired with nearby non-orchard AgWeatherNet (AWN) 
stations. The construction of this database is an essential foundation for modeling the orchard effect 
(Objective 2) and implementation (Objective 3). Increasing the number of stations in the 
classification database, particularly from grower-participants, remains a priority because the ability of 
the data to predict in-orchard conditions in orchards without a weather station will be strengthened 
with a longer period of record and more stations in the system.  
 
Objective 2 -- Statistical Modeling 
 
AWN will construct three statistical models for each target variable (temperature, humidity, wind 
speed). These models will have both continuous and categorical predictors and it may be necessary to 
construct separate models for different seasons or synoptic meteorological conditions. The general 
framework of these models is given below. All three models will be examined for consistency 
between transformation pathways. 
 

• Trellis post station -> reference station 
• Trellis post station -> canopy conditions 
• Reference station -> canopy conditions  

 
Ultimately, we want to run models and decision-support tools using weather conditions within the 
canopy. For orchardists who install weather stations on trellis posts, this requires construction of 
models that estimate within canopy conditions using trellis post measurements. 
 
Changes for 2022: 



• Results indicate that it is better for growers to install an in-orchard station than to rely on 
outside-orchard statistical corrections which are highly variable between orchards. 

• The modeling focus in 2022 will be on the dynamic effects of irrigation and statistically 
adjusting in-orchard data to account for irrigation events.  

 
Objective 3 -- Implementation 
 
Database modifications: 
In 2020, AgWeatherNet established an in-orchard station “type” designation in the existing database, 
ensuring that data from producer-owned stations is secure, and only available to the station owner 
unless they opt to make their weather data (and associated weather-driven tools) public. 
AgWeatherNet is also continuing to develop additional site-specific metadata fields in order to collect 
and store information from in-orchard station owners on crop type, irrigation systems, training 
systems, and sun shading where relevant. 
 
Model implementation 
 
All three models from Objective 2 will be coded into the AWN system. First, any data acquired from 
an in-orchard station will be transformed using the trellis-to-reference model for implementation of 
station comparison QA/QC procedures. This transformed data will also be used to train machine-
learning based forecast models as these are built upon physical atmospheric models that assume 
meteorological standard ground station data. Forecast predictions will subsequently be back 
transformed for site-specific delivery using the reference-to-trellis-to-canopy model. Current weather 
data will be directly transformed to estimate within-canopy conditions. Within canopy weather data 
and forecast estimates will be used to drive AWN (and potentially DAS) models and decision support 
tools.  
 
When an in-orchard station isn’t available, orchard managers can select and weigh up to three AWN 
stations to estimate site-specific weather conditions, and the reference-to-canopy model will be used 
to transform reference data for site-specific delivery of weather conditions, forecasts and tools.  
The new AWN app will include clear indications when transformed data is being used, and allow 
users to easily compare with raw in-orchard station data or reference station data. 
 
Changes for 2022: 

• Rather than implementing transformations as discussed above, weather forecast predictions 
will be trained directly on in-orchard weather data (after the in-orchard data has been 
corrected for irrigation events). The process of developing the forecast models is already 
underway, funded by a WSDA specialty crop block grant that began on 10/1/2021.  

 

RESULTS AND DISCUSSION 
 
Additional paired inside- and outside-orchard ATMOS-41 and ATMOS-14 all-in-out weather stations 
were installed in 2021. New studies include (1) a row orientation study (north-south vs. east-west) at 
the Mike Skeels orchard; (2) a height comparison study at the Smart1 orchard; and (3) a weak vs 
strong canopy comparison at the Smart2 orchard.  
 



 
 

 
 
 
 
Seasonal variability 
 
At the locations with over a full year of data and equivalent in-out station heights (AMT, Fir, O-road, 
Quincy, and Vanderbilt) it is now possible to quantify the seasonal variability in orchard effects. 
Figure 1 shows the monthly-averaged outside-inside difference in air temperature (top), RH (middle), 
and wind speed (bottom). The Quincy-Net site (discussed below) is plotted separately.  
 
Irrigation and evapotranspiration are the primary sources of temperature and RH effects. These 
effects peak in July (irrigation season) but linger into the fall. In late winter/spring the orchard effect 
is weak.  
 

       
 

 
Outside - Inside 

Difference 

Comparison 
Install 
Date 

Experiment 
type 

Height-
out 

Height-
In Days 

TEMP 
(F) 

RH 
(%) 

WIND 
(mph) 

AMT 2020-Jun-9  5.5 ft 5.5 ft 471 1.4 -3% 1.1 

CSC 2021-Apr-
27 

 5.5 ft 5.5 ft 183 0.8 -3% 0.2 

Dietz-high 2020-May-
29 

 5.5 ft 12 ft 516 0.5 -1% -1.0 

Fir 2020-Jun-5  5.5 ft 5.5 ft 470 2.3 -9% 0.2 
O-Road 2020-Aug-9  5.5 ft 5.5 ft 431 2.3 -8% 0.2 

Quincy 2020-Jul-17 Overhead 
netting 5.5 ft 5.5 ft 468 0.8 -2% 1.2 

Skeels-NS 2021-Apr-
27 

N-S 
orientation 5.5 ft 5.5 ft 183 1.7 -9% 3.0 

Skeels-EW 2021-May-
18 

E-W 
orientation 5.5 ft 5.5 ft 162 1.0 -5% 1.1 

Smart1-high 2021-Apr-
13 

Multiple 
heights 5.5 ft 12 ft 197 0.0 +2% -0.1 

Smart1-mid 2021-Apr-
13 

Multiple 
heights 5.5 ft 5.5 ft 197 1.1 -4% NA 

Smart1-low 2021-Apr-
13 

Multiple 
heights 5.5 ft 2.5 ft 197 2.0 -6% 1.2 

Smart2-
weak 

2021-Jun-
08 

Weak 
canopy 5.5 ft 5.5 ft 141 3.1 -11% 1.1 

Smart2-
strong 

2021-May-
04 

Strong 
canopy 5.5 ft 5.5 ft 106 5.1 -24% 1.5 

Vanderbilt 2020-June-
11  5.5 ft 5.5 ft 249 1.2 -5% 0.8 

Average          1.7 -7% 0.8 
             

Table 1: Metadata and summary statistics from paired station deployments. 
Stations in italics have different out-in heights.  



The wind speed effect is 
greatest in the late spring and 
early summer. In winter, we 
observed stronger winds inside 
the orchard at times, this was 
surprising and is most likely a 
result of wind machine usage, 
given the timing in 
February/March. Wind effects 
are also strongly dependent on 
station height – for instance, the 
12 ft inside-orchard Dietz 
station recorded stronger winds 
year-round than the 5.5 ft 
outside-orchard station. It must 
be strongly emphasized when 
placing in-orchard stations to 
locate the station in the exact 
spot where weather 
observations are needed. If the 
station is above the canopy, the 
weather conditions will not be 
reflective of in-canopy 
conditions.  
 
Effect of overhead netting 
 
The Quincy site with overhead 
netting in summer, plotted in 
Figure 1, shows that shade 
netting results in slightly 
different orchard effect. The 
netting does not have as strong 
of a cooling effect as 
microspray orchards. The 
relative humidity comparison 
shows a potential advantage of 
using overhead netting instead 
of microspray, as a weaker humidity effect is beneficial for disease prevention.  

Figure 1: Monthly average out-in difference in air 
temperature, RH, and wind.  



Difference between a weak and strong canopy 
 

The dynamic effect of irrigation is best illustrated using an example from the Smart2 orchard (Figure 
2), which had two in-orchard stations, one in a weak canopy (small/young trees), and a second in a 
strong canopy (large/established trees).  
 
Figure 3 shows a comparison from June 2021 between morning-only irrigation (left column) and 
additional irrigation as a result of the extreme heat wave in late June 2021 (right column). Prior to the 
heat wave, the temperature was cooler in the orchard at night but similar to outside during the day. 
Moisture effects were stronger in the early period.  
 
During the heat wave, temperature effects were dramatic, with over 10 °F cooling achieved in 
afternoon hours on average. The cooling effect lingered into the overnight hours. The effects were 
greater in the strong canopy compared with the weak canopy.  
 
This example offers one of the most extreme examples of how targeted microspray irrigation can cool 
an orchard. The average dew point in the strong canopy reached over 70 °F in the afternoon hours 
during the heat wave, effectively turning the orchard into a “swamp-like” environment. While the 
desired cooling effect was achieved, the extreme moisture increase is favorable for the spread of 
disease.  
 
Dynamic effect of overhead cooling 
 
The Smart2 orchard also revealed how an in-orchard weather station can detect the response to 
irrigation events. The black line at the bottom of Figure 4 shows the times when the in-orchard rain 
gauge detected microspray irrigation events. Based on 5-minute observations, we were able to detect 
that the irrigation pattern was on a 15-min on / 15-min off cycle for most of the period, except from 
the evening/overnight of June 28-29 when the irrigation was left on continuously.  

Figure 2: Photos of the Smart2 orchard installations 



 
The “squiggly” nature of the inside-weak 
temperature (Fig 4, lower panel) indicates a 
rapid recovery period between 15-min irrigation 
cycles as the temperature rebounded by as 
much as 5 °F between evaporative cooling 
cycles. In contrast, the inside-strong 
temperature (Fig. 4, top panel) had much less 
variability between irrigation cycles, likely a 
result of the increased surface area of the 
canopy. 
 
Perhaps less evaporative cooling is needed in 
strong canopies, but it is important to measure 
the in-orchard temperature and dew point to see 
the response to the cycle and adjust 
accordingly.  
 
In terms of the objectives of this proposal, we 
can easily remove overhead cooling events 
from in-orchard weather data using the rain 
gauge. Unfortunately, we found that leaf 
wetness sensors were not as accurate at 
detecting the dynamic effect of irrigation and 
cooling. It is believed that dirt and pesticide 
residues render in-orchard leaf wetness sensors 
unreliable. 

Figure 3: Diurnal comparison of Smart2 temperature (top row) and dew point (bottom row) 
between early June 2021 (left column) and late June 2021 (right column).  

Figure 4: Timeseries of Smart2 temperature, dew point, 
and irrigation during the June 2021 heat wave.   



Discussion 
 
The results of this ongoing study indicate that the decision to install weather sensors in-orchard has a 
number of benefits for growers and their decision making. However, growers must be aware that 
management activities will modify in-orchard weather measurements and must be corrected for. 
Besides irrigation and overhead netting, it is clear that the use of wind machines increases the 
temperature and detected wind speeds inside the orchard in the spring. This is clear even in monthly-
averaged data. These efforts counter the seemingly universal tendency of orchards to be cooler than 
surrounding open sites at night, year round.  
 
The diurnal and seasonal cycles of orchard effects are fascinating from a scientific perspective. This 
study represents the best effort in the literature to quantify these effects and is a significant step 
forward in developing models to account for these effects. Efforts moving forward will increasingly 
emphasize model development and weather forecasting based on these in-orchard observations, and 
growers are strongly encouraged to measure weather conditions directly within the canopy in order to 
benefit from these research efforts.  
 
One useful configuration is an ATMOS-41 station outside the orchard and an ATMOS-14 station 
inside the orchard, both at 5-6 ft height. If the paired stations are not at the same height, it induces 
additional uncertainty that is hard to correct for.  
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Budget 1  
Primary PI: Lee Kalcsits 
Organization Name: Washington State University   
Contract Administrator: Darla Ewald/Stacy Mondy 
Telephone: 509-293-8800    
Contract administrator email address: darla.ewald@wsu.edu/arcgrants@wsu.edu 
Station Manager/Supervisor: Chad Kruger 
Station manager/supervisor email address: cekruger@wsu.edu  
 

Item 2021 2022 
Salaries 18,0001 18,7201 
Benefits 8,4372 8,7742 
Wages 7,8003 8,1123 
Benefits 1,7494 1,8194 
Equipment   
Supplies 20,3445 3,6005 
Travel 4,025 4,025 
Miscellaneous    
Plot Fees   
Total 60,355  45,050  

Footnotes:  
1 Support of a research assistant at 50% for the duration of the project to collect and curate data, maintain 
experiments and prepare results for reporting and publication 
2 Benefits are at a rate of 46.87% 
3 Wages are to support a summer staff person to aid in collecting data, writing extension material, and for 
maintaining experiments 
4 Benefits for the summer staff position is 22.4% 
5 Supplies include the purchase of stem and fruit dendrometers, field consumables, and cellular data loggers. Both 
the sap flow system and microtensiometers were already purchased.  
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Objectives 
 

1. Deploy and evaluate the accuracy and precision of dendrometers, sap flow sensors, and stem 
microtensiometers in measuring plant water status  

2. Identify critical factors affecting the adoption of these technologies in Washington state tree 
fruit production  

3. Develop Extension materials and train growers in using these technologies. 
 
In 2021, all proposed sensors were installed in the smart orchard site. Some of the sensors were 
delayed from a lag in funding and purchasing administration within the University. These challenges 
have been resolved. Dynamax is now a cooperator with the project and has independently installed 
and is collaborating with the Smart Orchard project to provide data from their instrumentation. This 
led to more intensive instrumentation at the two smart orchard sites than anticipated. We have made 
progress on all three objectives including a concerted Extension/outreach effort led by Jenny Bolivar-
Medina. We have started compiling and integrating the different layers of continuous data from the 
season 
 
Significant Findings 
 

• Florapulse microtensiometers were highly accurate and precise in measuring stem water 
potential in real-time. These can be a viable replacement to making pressure chamber 
measurements manually. 

• Florapulse sensors had a ~90% installation success. Minimum trunk diameter for installation 
is ~40 mm. Smaller trunks make installation difficult.  

• Fruit growth sensors are difficult to maintain. They are knocked off the fruit easily and need 
to be checked daily. Furthermore, orientation of the sensor on the fruit affects measurements 
and the spring tension affects fruit growth. These factors suggest that irrigation decisions 
cannot be made with fruit sensors alone. Fruit growth rates are heavily influenced by many 
factors that are difficult to account. These sensors will help us better understand the 
relationship between fruit growth and plant water status in the soil-plant-atmosphere 
continuum. Other higher throughput methods of diameter sensing (stationary or mounted 
RGB cameras) are likely more fruitful for estimating temporal fruit growth and sizing profiles 
in an orchard.  

• Stem dendrometers and sap flow sensors have been more commonly used as a research tool. 
There is evidence that crop load, environmental conditions, etc., can affect trunk shrinkage 
and more research is needed to tease apart these contributing factors. 

• In order of ease of interpretation of data: Florapulse = Pressure Chamber > Stem 
Dendrometer > Sap flow > Fruit diameter 

• In order of ease of installation: Fruit diameter> Stem dendrometer > Florapulse > Sap flow 
 
Methods 
 
Smart orchard deployment 
 
We deployed commercially available dendrometers (fruit, trunk, and stem), sap flow sensors, and 
stem microtensiometers into the WTFRC-funded sensor orchards (in collaboration with Bernardita 
Sallato, Lav Khot, Dave Brown, and Steve Mantle) (Figure 1). Two trees were selected from a high 
and low vigor site within the spatially variable block. These same sites were aligned with the 
deployment for other sensors and monitoring equipment from other collaborators.  
 



 
Figure 1. Plant-based monitoring approaches that are proposed to be added to the sensor orchard in 
Grandview, WA that will include: 1. Microtensiometers, 2. Stem dendrometers, 3. Sap flow sensors, 4. 
Traditional stem water potential checks, and 5. Fruit dendrometer sensors.  
 
 
Table 1. Sensor deployment in Smart Orchard in 2021 
 

Plant Sensors Environmental Sensors Soil Sensors 
Stem dendrometer (June 28 to 

September 30) 
Fruit dendrometer (June 28 to 

September 30) 
Microtensiometer (April 24 to 

present) stem water potential 
Scholander chamber (Four times 

during the season)  
   stem water potential 
Sap flow (July 16 to present) 
 

Air temperature 
Relative Humidity 
Wind speed 
Radiation 

 

Soil volumetric water 
content 

Soil matric potential 

 
 
 
 



Pear study site and irrigation treatments 
 
The experiment was conducted during the 2021 growing season at the experimental orchard of the 
Washington State University located in Rock Island (Washington State, USA, 47° 19′ N, 120° 04′ W) 
on a 2 acre pear block (Pyrus communis L.), planted in 2007 on a shallow sandy loam soil. ‘D'Anjou’' 
pear trees were grafted on OHxF.87 rootstock and trained on a central leader system at a tree density 
of 344 trees per acre. Horticultural practices (e.g. fertilization, pruning and weed control) were the 
same for all trees in the block and followed commercial regular practices. Full bloom was in April, 
and harvest was in late August. Trees were drip irrigated by a system consisted of a single drip line 
per tree row and five emitters per tree of 0.5 gallon h-1 discharge rate. 
 
Two irrigation treatments were imposed, a control treatment (CTL) irrigated at 100% of crop 
evapotranspiration (ETc) to ensure non limiting soil water conditions and a reg-ulated deficit 
irrigation treatment (DI), irrigated at 100% of ETc from April 1st to June 27th, and 50 % of ETc from 
June 28th to October 15th. Crop water requirements (ETc) were calculated using the methodology 
proposed by Allen et al. (1998): ETc = ETo × Kc × Kr, where ETo is the reference evapotranspiration, 
Kc is the crop-specific coefficient reported for adult pear trees (Marsal, 2012), and Kr is a factor of 
localization (Fereres et al., 1982). Treatments were distributed according to a completely randomized 
block design with three replicates per treatment. Within each replicate, two trees were selected to 
assess their tree water status during the season. All measurements were conducted in the same 12 
trees selected for their uniformity (average ground cover of 41 % and mean trunk diameter of 10.5 ± 
0.23 cm). 
 
Measurements 
Four representative days with different atmospheric water demand, air temperature and solar radiation 
served to assess tree water status under a wide range of environmental conditions: (i) a sunny, warm 
day with low evaporative demand (June 12th, 2021); (ii) a hot, sunny day with high evaporative 
demand (July 2nd, 2021; five days after the irrigation change for DI trees); (iii) a hot, cloudy day with 
high evaporative demand (July 31st, 2021; 35 days after the irrigation change for DI trees); (iv) a hot, 
sunny day with high evaporative demand (August 11th, 2021; 46 days after the irrigation change for 
DI trees).  
 
Environmental data and soil water content 
Air temperature, relative humidity, wind speed, precipitation, solar radiation and reference 
evapotranspiration were continuous recorded by an AgweatherNet weather station located at the 
experimental orchard (http://www.weather.wsu.edu; “Sunrise sta-tion”). Moreover, two temperature 
and relative humidity sensors (ATMOS-14, METER Group Inc., Pullman, WA, USA) were installed 
in the pear block. Every 15 minutes, mean air vapour pressure deficit (VPD) was calculated using air 
temperature and relative humidity data (Allen 1998). Soil volumetric water content (SWC) was 
obtained with two capacitance/frequency domain sensors (TEROS 11, Meter Group, Pullman, WA, 
USA) per replicate at 10 and 20 inch depths located under the canopy projection at 10 inches from the 
drip emitter per replicate. 
 
Stem water potential 
Leaf Ψstem was measured by two different methods with the Scholander pressure chamber (PC) and 
with the microtensiometers (MT) in the same 6 trees at 6:00, 8:00, 10:00, 12:00, 14:00, 16:00, 18:00 
and 20:00 h. Ψstem measured with the PC (Model 615D, PMS Instrument Company, Albany, OR, 
USA) was done according to the methodology proposed by McCutchan and Shackel (1992). Mature 
and healthy leaves close to the trunk were wrapped with black polyethylene bags and aluminum foil 
two hours prior to the measurement. Measures were per-formed on one leaf per tree, two trees per 
replicate. In the same six trees, six MT (FloraPulse, Davis, CA, USA) were embedded into the tree 



trunk away from the sunlight at 1.0 m height. Ψstem measurement with MT were taken every 20 
minutes. Ψstem values were classified in a scale from 0 to 5 according to the tree water status, from the 
absence of water stress (0) to severe water stress (5): 0 for those values higher than -0.4 MPa, 1 
between -0.4 and -0.7 MPa, 2 between -0.7 and -1.0 MPa, 3 between -1.0 and -1.3 MPa, 4 between -
1.3 and -1.6 MPa and 5 for lower Ψstem values than -1.6 MPa. The sensitivity (S) was calculated 
according to Goldhamer (2000) for Ψstem measured with PC and MT. S is calculated as the result of 
the division of the Signal Intensity (SI), calculated as the relation between Ψstem of CTL and DI, by 
the coefficient of variation (CV).  
 
Additional sensor deployment 
 
Florapulse sensors were deployed in a 5th leaf Honeycrisp block with either B.9 or G.890 in three 
trees each. Installation of the sensors in small trunks like B.9 were problematic and one of the sensors 
failed on installation and another stopped logging correctly during the season. Sensors installed in 
G.890 continue to record data into the fall. They will remain in the trees during the winter continuing 
to log stem water potential and to test multi-season viability of sensors to continuously log data.  
 
Results and Discussion 
 
Smart orchard data examples and data analysis plan (Apple) 
 
All datasets have been collected for the summer of 2021. Connectivity limited real-time data 
monitoring but we will aim to improve this in 2022 by placing data loggers on poles extending above 
the canopy. We have collected microtensiometer, dendrometer, sap flow, fruit growth, soil moisture, 
and environmental conditions from the orchard location. We did not have dendrometers in both high 
and low vigor locations but we have all other data sets for high and low vigor locations within the 
orchard. Data will be organized and provided to the AgAID project for model development to predict 
plant water status from these various parallel datasets. This will help provide feedback for users with 
soil-based or weather-based sensors for making irrigation decisions as well as to fine tune baseline 
values for making stem-water potential-based irrigation decisions.  
 

 
Figure 2. Daily fluctuations in trunk growth for ‘Honeycrisp’ apple. The three black boxes represent 
three different times (July 7, July 31, and August 16) during the summer of 2021 at the Smart Orchard 



location in Grandview. ETo = Evapotranspiration estimatation; MDS = maximum daily shrinkage; TGR 
= trunk growth rate. ETo for the three dates were 0.27”, 0.13”, and 0.20” for July 7, July 31, and August 
16, respectively. Maximum daily shrinkage was directly related to potential evapotranspiration.   
 

 
Figure 3. Stem growth measured on a lateral apple branch at mid-canopy height in the high vigor area.  
 
Since stem growth is negligible for mature trees, these measurements did not correspond well to 
environmental conditions. Like trunk diameter, the maximum daily shrinkage corresponded well to 
environmental conditions where shrinkage was highest when temperature and water demands were 
the greatest.  

 
Figure 4. Microtensiometer stem water potential measurements made for ‘Honeycrisp’ apple in high 
(blue) and low (red) vigor sites at the Grandview smart orchard location. Measurements were expressed 
in MPa (1 MPa = 10 bars). Numerical values in the lower middle part of the graph represent pressure 
chamber measurements made during three days in June, 2021.  
 
Trees at the low vigor site consistently had lower stem water potential than the high vigor site which 
has implications for not just overall tree vigor but also fruit growth and size potential. When 
measured with a pressure chamber on June 18, June 23, and June 26, both predawn and midday stem 
water potential was lower (more stressed) in the lower vigor area. These values corresponded well to 
those measured with the microtensiometers.  



 
 
Figure 5. Fruit diameter measurements for ‘Honeycrisp’ apple from June 29 to August 25, 2021. ETo = 
evapotranspiration, MDS = maximum daily shrinkage (fruit), and FGR = fruit growth rate.  
 
Fruit growth rates were the highest when evapotranspiration demand was the lowest on July 31. We 
are still working on processing all the sensor data we acquired during the season and will be able to 
pull apart contributing factors to fruit growth during the summer at different times.  
 
Inducing differences in plant water status to detect sensitivity of real-time stem water potential 
sensing (Pear) 
 
Soil water content (SWC) was strongly influenced by the irrigation strategy applied. On June 12th, both 
treatments (CTL and DI) were equally irrigated to satisfy tree water requirements (100 % ETc), so 
consequently, both treatments showed a similar mean value of 23.06 % (Figure 1A). However, from 
June 28th onwards, trees from the DI treatment were irrigated to satisfy 50 % of the ETc so differences 
in soil water content between treatments appeared and increased as season progressed (Figure 1 B, C, 
D). SWC was similar all the selected days in the CTL treatment with daily mean values that ranged 
between 23 and 28 %. However, daily mean SWC values for DI trees were 23 % on July 2nd, 16 % on 
July 31st and 14 % on August 11th, which showed the progressive decreased of the soil water availability 
to trees from the DI treatment. 
 
 

 

 

 



 

Figure 6. Diurnal course of volumetric soil water content (SWC) (Control (CTL) = blue line and deficit 
irrigated (DI) = red line) and vapour pressure deficit (VPD; black line) on four representative days 
during 2021. 

 

Figure 7. Diurnal course of stem water potential measured with the pressure chamber (PC) (A, C, E, G) 
and with the microtensiometer (MT) (B, D, F, H) for control (CTL – blue lines) and deficit irrigated (DI – 
red lines) trees on four representative days during the growing season. Each point is the average of four 
six trees. Asterisks indicate statistically significant differences between irrigation treatments according to 
ANOVA (p ≤ 0.05). 
 

Table 1. Sensitivity analysis of the stem water potential measured with the pressure chamber (PC) and 
the microtensiometers (MT) for different periods throughout the day. 

Ψstem Morning Midday Afternoon Evening 
 PC MT PC MT PC MT PC MT 

CTL -0.42 -0.39 -0.63 -0.66 -0.79 -0.90 -0.65 -0.74 
DI -0.54 -0.52 -0.84 -0.86 -1.05 -1.16 -0.81 -0.94 
SI1 1.26 1.30 1.30 1.26 1.31 1.26 1.23 1.23 
CV 0.06 0.09 0.07 0.07 0.04 0.07 0.04 0.05 
S 19.48 14.44 17.65 18.16 34.02 18.16 29.93 23.89 

1 SI: Signal intensity (DI CTL-1); CV: Coefficient of variation; S: Sensitivity (SI CV-1) 



 
Figure 8. Relationship between stem water potential measured with the pressure chamber and the 
microtensiometers and relationship between CTL and DI stem water potential (DI - CTL). 

 
Figure 9. Mean daily fruit growth rate for pear (blue line) compared to maximum daily temperature 
(dotted line) during the heat even from June 23, 2021 to July 13, 2021. When daily temperatures exceeded 
38 °C (100 °F) fruit growth slowed to almost half of what it was when temperatures were below this 
threshold.  



 
Figure 10. Comparing stem water potential measurements made using the continuous microtensiometer 
measurements (y-axis) or traditional pressure chamber methods (x-axis).  
 
Extension programming 
 
Smart Orchard Field Day. We organized and participated in a field day with the purpose of 
providing firsthand information of the plant sensors installed and described in the previous section. 
The target audience were growers, and farm-making decision individuals in the tree fruit industry. 
Ninety-four participants attended the event. Overall, from the participants that completed the 
evaluation of the field day, 95% valued the information presented as excellent (60%) or good (35%).  
 
With the purpose to evaluate the effectiveness of the field day to transfer the information about 
sensors, we assessed the level of knowledge before and after this event (Figure 4A). The participants 
gained knowledge about the use of plant sensors in the orchards, as most of them reported to have 
little knowledge prior to the event but higher after the field day.  
 

 
 
Figure 11.  Percentage of participants and knowledge level before (gray bars) and after (solid bars) 
attending Field days. A Smart Orchard- Plant based sensors section. (n = 30). B. Field Day at the 
Roza in Spanish. (n= 15) 
 
 
 



Field day in Spanish. During a field day in Spanish organized in the experimental orchard the Roza- 
WSU – IAREC, we presented basic information related to the use of dendrometers in the apple 
industry, and we also prepared and shared an infographic about this topic. The event was attended by 
15 farmworkers from the south area of the state. Similar to the Smart Orchard event, the evaluation of 
the field day shows that the participants understood the information provided, and gained knowledge 
related to the dendrometers. (Figure 4B).  
 
 
2022 Plans 
 

1. Continue with data collection and comparisons between different plant-based sensors at smart 
orchard site and at Sunrise Research Orchard 

 
2. Integrate different layers of data into a soil-plant-atmosphere response model as part of the AI 

Institute agriculture thrust 
 

3. Test the reliability of sensors through the winter 
 

4. Publish Extension fact sheets on each type of plant-based sensor tested for this project. All 
the extension resources will be provided in a bilingual format.  

 
5. Organize a field day in Spanish at the smart orchard site to provide information about the 

sensors to the Spanish speaking community in the industry.  
 

6. Publish a peer-reviewed article validating the use of these sensors for accuracy and precision 
in measuring stem water potential in pear and apple.  
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PROJECT OBJECTIVES 

The current standard practice of broad-acre management does not result in targeted actions that are 
optimal for individual trees – this reduces the impact of management decisions and wastes resources 
while falling short on achieving the yield and quality potential of individual blocks. Our team’s overall 
goal is to improve fruit quality and yields by managing individual trees through a combination of 
automated sensing, learning algorithms, decision support tools, and precision application with variable 
rate technology. While for this project we focus on matching nitrogen fertilizer to nitrogen demand, our 
long-term vision is to extend this framework for farming at the tree level to other orchard management 
decisions (e.g. plant growth regulators, root pruning, tree pruning, chemical thinning). The conceptual 
framework that we have developed for precision nitrogen application is shown in Fig. 1 and includes 
the following sequence of activities: 

1. Build a site map of individual trees (performed once at the beginning of the project) 
2. Use non-contact sensing to estimate tree nutrition (performed annually) 
3. Recommend tree-specific fertilization plans using decision support tools incorporating 

machine learning 
4. Apply variable rate nitrogen using real-time vehicle localization and precision technology 
5. Use historical data to improve the performance of the decision support tool 

 
Figure 1. Project framework. A detailed tree map is developed for the site at the beginning of the project. Raw sensor data on 
various orchard parameters is used as input to a learning algorithm that provides precision fertilization plans. Onsite vehicle 
localization is used to execute precision application of nitrogen. Historical data on destructive leaf N measurements, 
horticulturalists measurements, harvest yields, etc. is used to tune the learning algorithm.  
We describe integration of these activities in greater detail throughout the remainder of this report. To 
implement the framework shown in Fig. 1, we have created the following three specific research 
objectives:  

1. Develop a ground vehicle-mounted sensor system that i) maps the geographic location of 
individual trees within an orchard block; and ii) measures plant parameters (e.g. shoot vigor, 
trunk cross-sectional area, and fall leaf color) to estimate the nitrogen status of individual trees  

2. Develop a decision support tool that recommends nitrogen application levels per tree and tracks 
the tree’s long-term response  



3. Develop and demonstrate a proof-of-concept precision spray system that localizes the vehicle 
with the orchard map, identifies the neighboring trees, and then selectively applies the desired 
level of nitrogen within the root zone  

This continuing report summarizes research progress for the performance period of November 2020 – 
October 2021.  

Objective 1: Orchard Mapping & Nitrogen Sensing  

In July 2021 we collected another large sensor dataset at the project site in Prosser. The types of data 
collected are similar to what we gathered previously in July and October 2020, consisting of RGB 
images, depth images, inertial measurement unit (IMU) data, and GPS data. There were two notable 
changes we made to the data collection process. First, since we are developing methods for 
automatically measuring trunk cross-sectional area, we angled the RGB-D camera to point more 
towards the ground so that the graft unions would be visible in the image (see Fig. 2 for an example 
image). The second change is that we collected GPS data from a low-cost GPS in addition to the more 
expensive model used in 2020. Details of the findings are described in Task 2. 

Task 1 – Tree trunk detection (OSU lead, WSU participant) 

The goal of this task is to detect tree trunks from an Intel RealSense D435 RGB-D camera feed. 
Detecting the trunk and then estimating the coordinates of the trunk in the pixel frame is necessary for 
both i) creating an initial map of the orchard, and ii) real-time localization at the time of N application. 
A map can be created by combining the detected trunk, its depth data and the vehicle’s GPS coordinates. 
We wanted to have a detector that could be used in real-time during nitrogen application, thus we 
needed a fast and accurate detector. 

We selected the YOLOv3 Convolutional Neural Network (CNN) object detector for trunk detection. 
Using the available datasets, we manually labelled the trunks with bounding boxes that correspond to 
the tree in the row closest to the camera. A sample result of the trunk detection is shown in Fig. 2 with 
the confidence of detection noted by the bounding box. The additional data collected in 2021 proved 
critical to improving the detector’s performance. A detector trained on images from only October 2020 
performed poorly at detecting trunks in July 2021 images. By expanding the training set to include 
additional image variability (e.g. season, lighting conditions, leaf color), the retrained network (i.e. 
trained on 2020 & 2021 images) was able to generalize and robustly detect trunks from both years. 
Table 2 summarizes network performance. 

 
Figure 2. Output of trunk detection using a YOLO network trained on images from 2020 and 2021.  

 



Table 1. Evaluation of network performance. 

 Accuracy Recall Precision 

2020 October (490 images) 94.32% 94.65% 99.38% 

2021 July (523 images) 84.22% 83.75% 98.05% 

Findings:  

● YOLOv3 is fast enough to use in real-time and shows robust performance. 
● A network initially trained only on 2020 October data showed poor performance when tested 

on 2021 July data; this was resolved by retraining the network with data from 2020 and 2021. 
● The network occasionally detected background trees even though we only trained it with 

foreground trees. 
● As shown in Table 2, the current network still shows worse performance on July 2021 test data 

which had more leaves covering the trunks and higher illumination conditions compared to 
2020 data. 

Methods: An object detector’s performance is substantially affected by the similarity of the object’s 
features in the training and testing images. Tree features vary by season and weather conditions at the 
time the images are collected. There are a couple of methods to improve or maintain a consistent 
performance; one of them is applying image histogram equalization on the data that are being fed to 
the network. This method involves adding/subtracting certain values to the R, G, B channels of real 
data so its histogram aligns with the training images’ histogram. The second method is to train the 
network on data that are collected under a variety of conditions, thus the network learns the features of 
trunks in various conditions. We will continue to expand the training set to improve the ability of the 
trunk detector to generalize across conditions. 

Task 2 – Orchard mapping (OSU lead, WSU participant) 

In our previous data collection trials, we collected GPS data using the Trimble GPS. While we generally 
observed high-quality results with it, the Trimble GPS is expensive, bulky, and difficult to set up. We 
recently acquired a lower cost RTK-GPS (a Reach GPS), which costs less, is lightweight and self-
powered, and relatively easy to set up. As such, for this data collection run, we collected data using 
both the Trimble and Reach GPS setups to see if the Reach GPS could provide adequate GPS 
performance. One comparison of the two GPS systems for a single orchard run is shown in Figure 3. 

Findings:  

● Overall, the Reach GPS (shown in blue) had very similar performance to the Trimble GPS 
(shown in red), separated by a very small, nearly-constant offset.  

● The results from Fig. 3 are from our second day of data collection. On the first day, the Reach 
GPS sometimes lost the RTK fix and ended up jumping around the map. However, since the 
status of the GPS message changed when this happened, we should be able to ignore these 
readings and fall back to dead reckoning methods as necessary. 

Methods: Our next step for creating a map is to combine the processed data from trunk detection (Task 
1) with the GPS data. We extracted the depth information of a detected trunk and were able to identify 
the tree’s location with respect to the vehicle’s location by reading the depth information and GPS data. 
However, we still need to work on instance tracking to avoid multiple tree counting. Theoretically, 
there will be clusters of multiple points that correspond to each tree, and we plan to set a distance 
threshold for the clusters. We then average the coordinates of all the points in a cluster, which will be 
the final estimated location of the corresponding tree. 



 

 
Figure 3. A comparison of GPS readings from two separate sensors during traversal of the test orchard. 

Task 3 – Nitrogen measurements and non-contact sensing (WSU lead, OSU participant) 

Tracking the growth of canopy shoots over the season can be a good indicator of the nitrogen status of 
the tree. We collected images towards the end of bloom during May 2021 using an RGB-D sensor (Zed 
camera). Fifty shoots at different positions in the canopy were chosen at random from thirty-five trees 
at various locations to obtain the ground truth data for the shoot length. We drove the camera assembly 
through seventeen rows to get the images of all tagged trees. The tagged shoots were tracked and 
measured using the depth images and compared against the ground truth. This approach for obtaining 
the shoot length through depth data was limited due to constraints of the depth sensor as it did not 
provide depth values for all positions in an image and tracking the shoot and their orientation in the 
image was challenging. 

 
Figure 4. a) RGB image and b) point cloud showing the tagged shoot. 



Canopy density and canopy color are other potential indicators of the nitrogen status of the tree. We 
captured images using the Zed camera from an offset distance where the overall canopy was visible 
(~1.5 m). Our working assumption is that trees higher in nitrogen will have a denser canopy and more 
vegetative growth than trees lower in nitrogen. The first task in obtaining the canopy density was 
segmenting the desired tree in the foreground from the trees and other objects in the background. We 
applied a K-means segmentation with two clusters followed by depth thresholding from the depth data 
to obtain the segmented image for each tree. The segmented image from one of the instances is shown 
in Fig. 5. The segmentation task will be useful for both canopy density and canopy color estimation. 
We are also interested in the color change of the trees throughout the fall season as the trees start to 
change colors and shed leaves. We have already started and will continue taking images throughout 
October and November 2021 each week to track the change in color of leaves for each tree. We can 
obtain a time series data for color change throughout fall and potentially relate that to the nitrogen 
content of each individual tree. 

 
Figure 5. a) Initial and b) segmented image of a tree after clustering and depth thresholding. 

Findings:  

● Estimating shoot length from point clouds is not accurate using existing techniques and will 
require further investigation. 

● Leaf samples were collected during July 2021. However, results from Ward Labs were not 
available at the time this report was submitted.  

Methods:  

For canopy density estimation, we plan to generate a bounding box for each tree in the segmented 
image. The area occupied by pixels other than the background (black) will be divided by the total area 
of the bounding box to obtain an estimate of the canopy density of each tree. The obtained number will 
then be compared against the nitrogen level of each tree obtained from the ground truth (i.e. destructive 
leaf sampling) to see if there is a correlation between leaf nitrogen and canopy density.  

For canopy color estimation, we also start with the segmented image for each tree. After equalizing the 
image’s histogram, we will cluster pixels based on color into 4-5 classes so that the fraction of each 
color in the canopy can be quantified. By the end of this analysis, we will have a time series data of the 
color of leaves for each tree that we can compare against the nitrogen content of the tree. 

As mentioned earlier, we also plan to develop a method for automatically calculating trunk cross 
sectional area using RGB-D data. A YOLOv4 network will be trained to detect graft unions. The graft 



union detection will then be used to find the pixels that are an appropriate distance from the graft union 
for cross sectional area calculations. These pixels will be sampled to find the distance of the tree from 
the camera. Next, the width of the tree at this height (in pixels) will be found using Hough transforms 
and edge detection. The tree width, distance, and camera lens angle will then be used to calculate cross 
sectional area. This calculation will assume circular trunks. 

Objective 2: Decision Support Tool (WSU/OSU joint lead) 

We have only started preliminary investigations on the Decision Support Tool at this stage of the 
project. Our main effort to date has been collecting extensive datasets from multiple seasons and 
developing the algorithms required for the various components of the project. Our focus over the next 
year will be to use sensor data, horticultural measurements, and historical data on yields to develop 
learning algorithms for creating precision N fertilization plans. We plan to start with relatively simple 
statistical techniques such as nonlinear regression or logistic regression to classify individual trees as 
‘N-low,’ ‘N-satisfactory,’ or ‘N-high’. Based on the classification performance with regression, we 
may need to consider more sophisticated learning algorithms. We will start with two to three variables 
such as trunk diameter and leaf color and progressively add new variables such as NDVI and canopy 
density as they become available.   

Objective 3: Variable Rate N Application 

Task 1 - Vehicle localization (OSU lead, WSU participant) 

Vehicle localization within a known map is a well-studied problem in autonomous systems. For this 
project, we are using a navigation system that combines two vehicle sensors, an inertial measurement 
unit (IMU) and camera. For a precision N application, the vehicle starts from a known location at the 
beginning of the first row of the orchard. As the vehicle begins to traverse a row, sensors provide 
feedback on detected trunks and vehicle kinematics. By fusing the sensor information with a Particle 
Filtering algorithm, a standard technique for state estimation and localization in autonomous vehicles, 
we can use dead reckoning to continuously track the spray vehicle’s position, heading, and velocity 
inside the orchard block without the need for GPS. To fine tune the algorithm for localization, we 
simulated the orchard environment and vehicle movement in python and tested the convergence of the 
ground truth vehicle position and estimated vehicle position (Fig. 6). 

Findings: 

• A particle filtering system shows potential as a method to localize work vehicles using camera 
and inertial data only (i.e. no GPS required)  

Methods:  

We are using a particle filtering algorithm for 
localization. The basic principle is that we 
initialize a few thousand particles around the 
sensed vehicle location. One of these particles 
would be the ground truth position of the 
vehicle. We find this position by filtering these 
particles using landmarks. Here, we are using 
the trees as the landmarks. We get the closest 
tree to the vehicle from sensor readings and find 
the particles that are at the same distance to this 
tree from the vehicle. These particles are given 
higher weights and as the closeness of the 
particle-tree distance to vehicle-tree distance 
decreases, the weights given to the particles also 

Figure 6. Convergence graph between ground truth position of 
the vehicle and localized position versus time step. 



decrease. These weights are distributed as a function of negative powered exponentials. Finally, we 
create a cumulative weighted distribution of the particle weights and pick particles for the next time 
step using this distribution. Thus, higher weighted particles are picked at a higher frequency. The 
localized position is taken as the mean of these particles. We iterate the process for a few time steps 
and the localized position converges with the ground truth. 

DISCUSSION 

Table 1 shows the project’s original objectives, subtasks, and current schedule (an X marker indicates 
an activity in progress). During the first 18 months of this project, we have focused on collecting 
extensive datasets (i.e. sensors, horticultural measurements, and yield/quality at harvest) and 
developing computational techniques for trunk detection, non-contact N estimation, and vehicle 
localization. During the upcoming year, we will dedicate additional resources to using the collected 
datasets to develop a Decision Support Tool for precision fertilization plants. We will also begin 
working on some of the hardware required for an initial prototype of a variable N application system. 
While we will make the datasets and algorithms open-source and freely available to the community, 
we anticipate that the Decision Support Tool will have the most long-term value to the industry. Also, 
while it was not an original objective of this project, we have determined that a low-cost, open-source 
portable sensor box that could be used for vehicle localization may be of widespread interest. We will 
explore the development of such a sensor system over the next year.  

Table 2. Original project objectives and schedule. 

Objective Research Activity Year 1 Year 2 Year 3 

1 

Develop methods & algorithms for tree trunk 
detection X X X    

Discussions with experts and N data collection 
(e.g. leaf samples, physical measurements, N 
applied) 

X X X X   

Map the orchard block with RTK-GPS  X X    
Develop methods & algorithms for vehicle 
localization  X X X   

Develop methods & algorithms for N sensing: 
geometric, color, and spectral characteristics X X X X   

2 Create a collaborative decision-making 
framework for recommending fertilizer plans       

3 

Design and develop a variable rate, proof-of-
concept sprayer       

System integration with limited field trials 
demonstrating variable rate N application       
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Objectives overall project 
Making fruit cultivation more efficient, intelligent, sustainable, and future-proof requires us to be 
able to monitor, manage, and make decisions at the level of individual trees. Smart Technology 
will enable getting the most out of an orchard through the targeted, efficient use of crop protection 
agents, plant hormones and fertilizers, while saving on labour and minimizing food waste. This all 
contributes to the creation of a sustainable fruit cultivation system.  
 
The project has therefore three key objectives in relation to technology development:  

1. Improving the sustainability of cultivation and the supply chain by: 
a) developing ways of applying crop protection agents, plant hormones or fertilisers to 

individual trees (or parts of trees) based on new ways of detecting stress, pests, and 
diseases (using sensors and new algorithms) and  

b) by combining data to develop new decision support models using AI. This will, for 
example, give decision support in storage duration and conditions to prevent loss and 
waste of the fruit, or help to determine the optimal dose of crop protection agents, growth 
regulators and fertilisers. 

2. Maximising yields by optimising cultivation and storage through the optimisation of 
individual tree growth. 



3. Minimising costs by developing multifunctional robots to replace human labour and ensure 
the efficient use of inputs.  

 
The need to achieve these objectives has led to the project being organised in four cases. A brief 
description of the four case studies is provided below, including an explanation of how they 
mutually reinforce each other.  
 
Case study 1: Further development of precision sprayer 
The former project Fruit 4.0 demonstrated that precision spraying at the level of individual trees is 
possible. In The Next Fruit 4.0 we want to further develop and broaden the application of 
precision spraying by controlling it down to individual nozzles and by using sensors to detect 
pests and diseases and apply sprays in response. Being able to control sprays at the level of 
individual nozzles also optimises the use of regulators for growth and fruit setting, resulting in a 
more uniform orchard. Hot spots of insect infestation can also be controlled without spraying the 
whole orchard. 
 
Case study 2: Advanced crop management and yield registration 
This case study is based on the use of sensors to collect data and translate it into decision support 
models visualised as clear dashboards. This will involve making the sensor platform from the 
Fruit 4.0 project applicable to more than just apples. The wide range of data and information 
gathered will also be distilled into clear insights around cultivation management. With help from 
experts and the use of modern AI algorithms, decision models will be created that can contribute 
to optimising and improving the sustainability of fruit cultivation. 
 
Case study 3: Cool data 
Apples and pears are often stored for a long time, even up to the following harvest. Storing the 
fruit for any length of time often leads to substantial losses due to a lack of clear, objective 
information on how long a particular batch can be stored. This case study will focus on 
maximising the use of data derived from the cultivation phase (climate, crop, and soil) and the 
focused application of new technology (sensors), leading to decision models that deliver better 
risk assessments and storage strategies. This will help reduce loss and waste during storage.  
 
Case study 4: Multifunctional robot 
Finally, The Next Fruit 4.0 will also work on expanding the functionality of existing robots which 
are already in development (e.g. by adding a gripper for picking pears, or for pruning and 
removing suckers) and which could perform more efficiently through technological improvements 
and better orchard design. All of this will help solve the problem of increasingly limited 
availability of seasonal labour. 
 
Project kick-off was the first of May 2021. The results presented are from the last 6 months. 
Results are presented per case.  
 
Case study: Precision sprayer 
 
Objectives 
A validated prototype precision sprayer for several fruit crops, which is directed at nozzle level on 
the basis of smart algorithms and decision models and combined with stress, disease and pest 
detection. 
 
Significant Findings 

• Laser scanner data can be processed into tree height and volume 
• First steps are made to translate laser scanner data into spray actions 

 
Methods 



The first year of the project will concentrate on: 

• Building an improved sensor platform with lidar and GPS. 
• Data collection in the orchard.  
• Processing data into usable data for spray decisions at nozzle level 
• Build 2 sprayers with laser scanner that can spray at nozzle level and that can adapt dose 

on tree volume 
 
Results and Discussion 
 
In Fruit 4.0 (former project) and The Next Fruit 4.0 we have been busy mapping the crop in recent 
years by means of a Lidar (LIght Detection And Ranging) system. This is a system of project 
partner Pepperl + Fuchs. The Lidar can be mounted on a sprayer of sensor platform. Three 
dimensional information is collected by driving through the orchard as is explained below.   

A Lidar system gives pulses with an infrared 
light and rotates at high speed, the pulses are 
collected again and in this way it is 
determined which objects are closest. If you 
then know the location of the sensor, through 
GPS, you can reconstruct the shapes of the 
objects around the sensor. We then also merge 
the data from the two sides of the row of trees 
together and in this way you can arrive at a 
fairly complete tree structure. The advantage 
of the system is a fairly good resolution (1440 
measuring points in the round, 50x per 
second) and that it is not affected by sunlight. 
We are currently at the stage where we can 
estimate the height and volume per tree and 
we are working hard on how we can control a 
sprayer based on this data. The height and 
volume can mainly be used to get an overview 
of the crop/field, but other input is needed to 
control a sprayer. One possibility is 'ordinary' 
gap detection, we define blocks based on the 
nozzle positions, and we then check whether 
something is present in these blocks, the 

nozzle can then be controlled accordingly. 
The next step is to look at tree volume, so that the amount of spray liquid is adjusted if there is 
more or less volume in one spot. This is not yet applied to the available orchard sprayers in the 
Netherlands. Yet another route is to decide on the basis of data in the time, how has a tree 
developed in recent times and should fruit growers therefore, for example, do a growth-inhibiting 
or stimulating treatment. The Lidar data could also be used for this. In the coming period, there 
will be consultations with spray machine manufacturers KWH, Munckhof and ABB to see how 
the Lidar can be integrated into their orchard sprayer (robot). 

Figure: Lidar data from both sides of the 
tree merged into one. 



 

Left side: laser scanner data of several trees with an grid overlay, right side: translation data into 
spray volume based on number of laser points per grid (light-low amount to dark-high amount)   
 
Within this work package, there is regular contact with our colleagues in the US of the  
Washington State University about the precision sprayer. A research budget has been requested 
there to record the blossom with sensors, just like in the Netherlands, and to link it to a spraying 
action. 
 

Case study: Advanced crop management and yield registration 
 
Objectives 

• Validated sensors and algorithms to collect physiological and phytopathological 
characteristics of apple and pear.  

• Validated decision models developed on the basis of collected data and expert 
knowledge; targeted on production optimization. 
 

Significant Findings 

• New sensor platform with RGB camera’s, laser scanner, chlorophyl sensors and GPS that 
successfully was used to collect data at different grower sites. The new interface made it 
possible to use the platform with little background knowledge.  

• Laser scanner data has a good relation with tree vigour. This gives the potential to 
regulate growth at tree level with root pruning, growth regulators or leaf fertilizers.  

• First results of field trials that show the potential of management on tree level with 
blossom and fruit thinning.  

 
Methods 
The first year of the project will concentrate on: 



• Building a new sensor platform that can be used by non-
professionals and is easy to transport. Sensor used are: RGB 
camera, laser scanner, chlorophyl sensor and GPS 
• Data collection in the orchard and ground truth 
measurements on tree vigour, number of blossoms and 
fruits.  
• Processing data into usable data for tree vigour, pear 
blossom and fruit detection 
• Building data models and dash boards for growers for 
presentation and management at tree level 
• Setting up trails on thinning based on sensor input  
 
Results and Discussion 
 
After building the new sensor platform, data was collected 
at different sites during the growing season. Also ground 
truth data was collected.  
 

In addition to collecting data, the first hand has also been laid on developing models that can 
directly translate data input (from the sensor platform or drone flights) into a precision spray 
application. The first step is by giving each tree an identity (tree ID). Each Tree ID data has 
information on orchard structure such as planting distance, planting system, age, etc. And in 
addition the amount of flower clusters, the amount of wood in a tree and the type of wood on 
which the flower clusters are located. This provides information about the tree's energy balance, 
which strongly influences the natural June drop. 
The next step is that each tree can be treated separately. Such as inhibiting by means of root 
pruning or growth regulators or stimulating by fertilization or, among other things, gibberellins. 
But the biggest opportunity is in chemical fruit thinning. The model combines vigour with 
blossom and analyses to achieve the desired applications in practice. It is often seen that there are 
four scenarios: too much blossom/little growth, too much blossom/much growth, too little 
blossom/little growth, too little blossom/much growth. Each of those 4 scenarios has its own 
applications. By combining this with precision spraying, the data management can be converted 
into direct practical applications and therefore added value for the grower. 
 
 
To test the potential of management at tree level, experiments were set up in which parts of the 
orchard has been treated completely and other parts treated on a task card. Fruit counts were done 
just before harvest. The results are now being worked out, but the first results are promising. 
 
Case study: Cool data 
Objectives 
The focus for this year was to select and evaluate tools for non-destructive quality assessment of 
fruit both preharvest and postharvest. Observed differences between batches of fruit should be 
related to relevant quality characteristics of the fruit. Not only aiming at quality assessment of 
freshly harvested fruits but also related to storage behavior of the respective batches. 
In order to perform proper evaluation of the selected tools, a selection of batches that supposedly 
differ in (storage) quality is needed. This season was used to arrange different batches of 
Conference pear that can be used to evaluate the tools.  
 
Results and Discussion 
First the tools to evaluate the fruit have been selected. Non-destructive measurements using new 
tools are being related to common (destructive) quality assessment methods. 
 
Common quality assessment 



• Firmness, Brix, Weight 
• Photographic analysis (color, shape, percentage russeting) 

 
Nondestructive assessment 

• Near Infrared – both a hand held sensor from the project partner Kubota and 
hyperspectral imaging from our in-house facility 

• Microwave based – a hand held sensor from the project partner Vertigo 
Both the hand held sensors (from Kubota and Vertigo) have been used in one of the selected 
orchards, pre-harvest (Figure 1). 

Variation in fruit quality was arranged using fruits from: 
Two high risk for Cadophora spp. orchards 
An experimental orchard where four different irrigation regimes have been applied 
Two commercial orchard that supposed to differ in storability characteristics 
Next to that one of the high risk for Cadophora orchards has been used for 1-MCP (Fysium) 
treatment. 
 
Fruits from these orchards were stored under optimal conditions (ULO) in a commercial storage 
facility. Besides part of the fruit is stored under suboptimal conditions at the WUR facility in 
Randwijk. 
Quality of the fruits will be evaluated after two different storage duration in 2022. 
 
Furthermore activities to analyze pictures from regular storage bins, on location and shortly after 
harvest were started. This aims at providing the fruit grower with quantitative information (size, 
shape, russeting, other aberrations) upfront storage and sorting.   
 
Future plans 
In 2022 after storage quality of the pears will be assessed and correlated with original quality data 
gathered before storage. Furthermore different other sources of orchard data will be studied and 
possibilities for discrimination of batches upfront storage will be explored. 
 
Case Multifunctional robot   

Objectives 
The main objective of the multifunctional robot case is to expand the functionality of existing 
orchard robots and of orchard robots currently under development in parallel research projects. 
The focus of the work is on two topics, namely the development of a sensing system and a gripper 
for picking pears and on a sensing system, robot control and end-effector(s) for robotic pruning of 
fruit trees and red currant bushes. On the longer term additional tasks such as automatic thinning, 
removing weeds and precision spraying will be targeted.  
 

Figure: Quality assessment of fruits 
in the orchard. On the left picture 
using the Microwave based sensor, 
on the right, the portable NIR 
sensor 



Significant Findings 

• For robotic harvesting pear the detection system needs not only to be able detect the 
position but also the orientation and some key points of the fruit. 

• The required motion to detach a pear from a tree is significantly different from that to 
detach an apple. 

• Robotic pruning of fruit trees is exceptionally challenging due to the complex and dense 
structure and also due to the different pruning rules applied at different growers. 

• Extensive knowledge and expertise on automatic pruning and fruit harvesting is present at 
Washington State University and Oregon State University. Close cooperation and 
knowledge exchange between Dutch and US researchers will be of mutual benefit. 

• For the pruning of red currant bushes clearly defined rules are available. In consequence 
the project will target this crop first. 

 
Methods 
The first year of the project will concentrate on: 

• Building up knowledge on the current state-of-the-art. 
• Extracting the brief of requirements for the targeted applications.  
• Drafting first concepts and designs.  
• A first round of data collection in the orchard.  

 
Results and Discussion 
The multifunctional robot case of the Next Fruit 4.0 project explores two different robot concepts. 

The first concept is based on the apple picking robot 
that is currently being developed in the parallel on-
going project “Handsfree Robotics” that started in 
2020. In this project the Dutch companies  
Munckhof Fruittech Innovators and RIWO 
Engineering cooperate with Wageningen University 
and Research. The base of this concept is a 
Munckhof Pluk-O-Trak harvesting aid. 
 
Multiple robot units will replace the human workers 
on the Pluk-O-Trak. It will therefore become in the 
future an apparatus with several smaller robotic 
arms. In 
the 
second 
concept 
only one, 
but much 
larger 
robotic 
arm will 

be used. This arm can reach an entire apple or pear tree 
on either side of the corridor from one fixed robot 
position. The participating robot company ABB makes 
the arm available for this. WUR will realize a mobile 
set-up for this that will be located in the experimental 
orchard from WUR in Randwijk.  
 

Concept with one large robotic arm 
on a mobile carrier 

 

 

 

The Munckhof Pluk-O-Trak harvesting 
aid (source: 
https://www.munckhof.org/en/machine/
pluk-o-trak-junior/)  

 

https://www.munckhof.org/en/machine/pluk-o-trak-junior/
https://www.munckhof.org/en/machine/pluk-o-trak-junior/


For both the topics (harvesting pears and robotic pruning) a literature study is currently carried 
out. Input from stakeholders and end-users will be collected for setting up a brief of requirements. 

For the topic of harvesting pears research on different camera 
systems and on image analysis methods for fruit pose detection is 
carried out. First sensor data was collected just before manual harvest 
takes place. Next to images also video recordings were collected that 
allow a detailed study on the motion needed to detach a pear in the 
correct way. Based on the collected images a deep-learning based 
pear detection and pose estimation system is under development.  
 
Furthermore, for red current, a camera system is currently being 
worked on that can map the 3D branch structure of the plants. During 
the manual pruning of the red current in upcoming winter season first 
data will be collected. The ability to distinguish between 1-year-old 
and 2-year-old shoots on the basis of colour or spectral properties is 
also being investigated. A first hyperspectral analysis of red current 
branches showed good possibilities to do so.  
 
 
Work is also being done on 
realizing a realistic indoors robot 

test environment. This setup will contain tree trunks with 
plastic twigs, leaves and fruits. Such an arrangement will 
enable us to carry out experiments year round.  
 
Within the topic multifunctional robot there is contact an a 
regular base with researchers in the US from Washington State 
University and Oregon State University about autonomous 
pruning with robots. First data sets have been shared already. 
Possibilities for mutual visits (once Covid allows) and the 
exchange of students/visiting researchers have been discussed. 
 
As the project kicked-off just little more than half a year ago 
the activities scheduled for the first year are all still in progress 
and are not finalized at the time writing this report. It is not 
expected that significant deviations from the original project 
plan and from the scheduled milestones will occur in the first 
year. 
 
Economic Validation & Innovation Adoption 
 
Working on new technology without also investigating whether the practice ultimately also wants 
to invest in this technology is not smart. That is why in this part of the project, together with 
technical companies and fruit growers, we will map out the added value of the new technology. 
The first case study to work on is the precision spray technology. 
We look at both the added value in the short term and the value in the longer term. In addition, an 
overview is given of what can contribute to a rapid implementation of new technology in practice. 
 
An interactive workshop was held on the 11th of October in which a group of suppliers for parts of 
the precision sprayer, manufacturers of the precision sprayer, growers, cultivation consultants and 
sales organisation jointly mapped out (1) what added value the precision sprayer already has for 
end users. and (2) what the additional added value could be in the future. 
 
 
 

 

Harvesting pears 

 

Red Currant 
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1. OBJECTIVES 
The following are the project objectives that remained same as the ones proposed in the original 
proposal. 

1) Optimize camera configuration for multi-arm operation of our robotic harvesting machine  
2) Integrate and demonstrate multi-arm harvesting robot to cover entire tree height  
3) Evaluate the performance of the harvesting robot while in motion    
4) Demonstrate integration of the harvesting robot with fruit conveying and bin filling system  
5) Investigate machine vision and robotic end-effectors for blossom and green fruit thinning 
1.1 Timeline of the Project Activities  

 
Obj. # Research Activities 

Time   
Year 1 Year 2 Year 3 Year 4 

 
1 

Develop a robotic system with multiple 
cameras     

  
  

  
      

 

Optimize camera locations and create fruit 
map for harvesting based on accessibility     

  
  

  
(1)      

 

 
2 

Develop and  evaluate a robotic harvesting 
system with multiple arms for entire tree        

 

   
3 

Develop a control system for automated 
forward motion control     

  
  

  
      

 

Evaluate the machine for automated 
operation during motion     

  
  

  
      

 

 
4 

Integrate multi-arm robot with a harvest 
aid platform      

  
  

  
      

 
 

Evaluate the performance of the machine 
for harvesting, conveying and bin filling      

  
  

  
     (2) 

     (3) 
 

 
5 

Develop machine vision system for flower 
and green fruit detection       

  
  

  
      

 

Preliminary evaluation of a robotic system 
for flower and green fruit thinning      

  
  

  
      

 

 

2. SIGNIFICANT FINDINGS 

The most important accomplishment of this project is that we were able to build a full-scale 
integrated system and evaluate it in Washington, which shows that the robotic apple picking is 
technically and economically viable. The trials in Washington also exposed us to new apple varieties 
including Ambrosia, Honeycrisp, and Kanzi, which added a substantial and significant amount of data 
in our continuing efforts to improve the FFRobot.   

• The fruit detection algorithm developed based on a deep learning technique worked properly. 
The technique and technology used also showed promise for detecting obstacles such as 
branches and trellis wire.  

• The multi-arm system was working correctly with minimum interferences between the 
different arms.  

• The current robotic system is now able to work in 10-14 foot rows.  
• The analysis of robot limitation and the description of suggested setting of the fruit is 

underway; we will work with the tech committee to distribute the document.  
 



• Results with the blossom detection algorithm showed great promise for accurate detection of  
blossom clusters and estimation of blossom density in orchard environment. A number of 
end-effectors technologies assessed for effective, robotic blossom thinning. 

3. METHODS 
Harvesting Objectives 1 to 4: 

3.1 Obj.# 1: Optimize camera configuration for multi-arm operation of robotic harvesting machine 

Introduction: Our team has been developing and evaluating a robotic apple harvesting machine over 
the past several years (www.ffrobotics.com). Until 2017, field tests have been conducted with one 
robotic arm (simple, linear actuation) with a single picking hand in conjunction with a single camera 
attached to the platform. 

Our teams from FFRobotics and WSU found that, in a modern fruiting wall orchard, more than 95% 
of apples can be detected (e.g. Silwal, 2016). Adding additional robotic arms (12 arms by now – 
tested in Washington) made  it necessary to evaluate whether the location of the camera on the 
platform will yield the same results, and investigate the alternative of attaching camera to the base of 
the robotic arm to achieve best data acquisition results. WSU team lead this objective in collaboration 
with FFRobotics team. 

Materials: The current vision system has been modified to facilitate placement of the required 
hardware on the base of the robotic arm which is attached to the platform frame. Field data was 
collected to determine the percentage of apples detected by the vision system from different locations. 
The system was evaluated in different kinds of orchards including -   

(A) An orchard with fruit thinning to singles and pruning tree growth to approximately 10 inches 
beyond the trellis wires. 
(B) An orchard with mechanical pruning  
(C) Different canopy architectures including V-shape and Tall Spindle system.  
 

Procedure: The entire image acquisition process began by scanning the canopy directly in front of the 
initial multi-arms robot position. Some apples were blocked by other apples, leaves, branches, trunks 
and trellis wire, which were difficult to be accessed and picked using a robotic hand. A deep learning-
based image processing technique was used to identify different parts of the canopy and other objects 
as potential obstruction to apples for robotic picking. The image processing technique was  able to  
detect apples that are not obstructed by other fruit, branches, trellis wire and trunk.  These fruits are  
identified as completely visible and accessible fruit, which were picked by robotic hands. After the 
initial picking cycle was completed, the same section was re-scanned  to see if more fruit are exposed 
with desired level of visibility and accessibility. The process was repeated until no accessible fruit are 
available in the canopy. The picking system then moved down the row and the process was  repeated 
(as discussed in the following sub-sections). Missed apples were hand counted and compared to the 
number of detected apples. For vertical trees, this process was repeated from other side of the 
canopies to maximize the fruit harvesting percentage. The technique has been also extended to 
process videos collected by moving machine, which allows understanding the potential improvement 
in fruit detection through different viewing angles. 

3.2 Obj.# 2: Integrate and demonstrate multi-arm harvesting robot to cover entire tree height 

Introduction: As discussed in Obj. #1, our prior prototypes were based on one arm which limited the 
ability of the robot to pick the entire tree. It was proposed to investigate and introduce hardware and 



software changes to enable the dynamic structure of 
several robotic arms to gain the full range of 3 feet 
width, 3 feet depth, and 12 feet height canopies. We 
built such a system and evaluated (preliminary) in 
Israel during 2018 harvest season and an improved 
machine was evaluated in Washington in 2019 and 
2021 seasons (2020 season was missed due to 
pandemic). FFRobotics led this research activity in 
collaboration with WSU team. 

Materials: Hardware and software was modified to 
support the multi robot arms (6 robotic arms on each 
side) in the same frame allowing dynamic 
movements along the height axis of the tree (Fig. 1). 
The new software algorithms controlled the entire 
system to allow best performance with dynamic coordination between arms in term of their work-
space.  

Procedure: The image acquisition and processing system (described in Obj.#1) provided coordinates 
of linearly accessible fruit in the entire work space of the machine (which is roughly 3ftx3ftx12ft). 
Optimization techniques were employed to provide sequence of fruit to be picked by each arm of the 
multi-arm robotic system. To optimize the system, more experiments were carried out by sending, but 
not picking apples, the robotic arms to the desired fruit. This experiment allowed evaluating several 
techniques of sequencing fruit picking pattern in the same location.  

3.3 Obj.# 3: Evaluate the performance of the harvesting robot while in motion 

Introduction: We have  introduced  both hardware and software changes to our current picking 
system to automatically move down the row in optimal steps as per the progress in fruit picking 
estimated by the camera system. FFRobotics team ledi this research activity in collaboration with 
WSU team. 

Procedure: The entire system began by scanning the canopy to detect the fruits, which then started 
the picking process and automatically moved to the next stop. During the field evaluation, machine 
capacity, percentages of picked and bruises apples,  time between the consecutive locations and the 
time to stabilize the robotic frame to be ready for the next picking session has been collected. The 
picking system was then move down the row by certain distance (e.g. 1 meter) and the process was 
repeated.  

3.4 Obj.# 4: Demonstrate integration of harvesting robot with fruit conveying and bin filling system 
Introduction: Picking system and the Harvesting Aid system were integrated and evaluated to 
demonstrate bruise-free end-to-end, fully functional harvesting solution.  

Materials/Procedure: There are  6 robotic arms in the same frame allowing dynamic movements 
along the height of the tree as an add-on for an existing Harvesting Aid System (Automated Ag. 
Platform). The integration of Harvesting Aid machine and multi-robot conveyer system presented 
end-to-end solution from fruit harvesting from the trees through to conveyance all the way to the bin. 
FFRobotics team lead this research activity in collaboration with WSU. 

Blossom and Green Fruit Thinning Objectives 5: 
3.5 Obj. #5: Investigate machine vision and robotic end-effectors for blossom and green fruit thinning  

Introduction: Once harvesting is automated, blossom and green fruit thinning will be another crucial 
step requiring automation or robotic solution. In this project, while fully developing and evaluating an 
integrated robotic harvesting system, some efforts was placed on robotic blossom and green fruit 
thinning. Our hypothesis was that, in the long term, all the manual operations in the field need to be 

Fig. 1: Multiple robotic arms supported by one frame  



automated and the machines need to be multi-functional with plug and play capability. WSU team 
lead this objective in collaboration with FFRobotics team.          
Materials: A multi-camera system was developed and used in Obj.#1 of this proposal for detecting 
accessible fruit for harvesting. We used the same cameras and sensors to collect images from apple 
orchards during bloom and green fruit stages. The images were analyzed to detect and localize 
flowers and a robotic system was used to approach targeted flower clusteres for destroying or 
removing desired amount of flower (no efficacy analysis was performed in this work). 

Procedure: In this work, the deep learning  algorithm developed in  Obj. #1 has been revised and 
improved to detect flowers during the bloom stage, which is als expected to be easily adopted to 
detect green fruit (future work). Flower and green fruit locations was estimated using a stereo-vision 
system, which consisted of two cameras (as a part of sensor like RealSense camera). The locations of 
flower or green fruit in the given work space was provided to a robotic machine for reaching and 
removing unnecessary flowers. Various end-effector technologies  has been evaluated for precision 
and effectiveness in removing desired amount of flower from target canopy regions, which include 
pressure hose, waterjet, electrically actuated brush system. 

4. RESULTS & DISCUSSION 
4.1 Obj.# 1: Optimize camera configuration for multi-arm operation  

Images and videos have been collected and were processed for improved detection and localization of 
apples for fruit harvesting. Data were collected using an Intel RealSense 435 camera (Intel, USA) 
mounted on top of a robotic arm moving across its workspace.  
In addition, the machine vision system, developed using a Mask 
RCNN (one of the latest deep learning techniques), was expanded to 
detect additional parts of tree canopies, including branches and leaves 
along with fruits, so that important orchard characteristics such as 
branch obstruction, occlusion and pseudo-pendulum effects can be 
detected, Fig. 2.  
The proposed method detected fruit parts with a mean average 
precision (mAP) value of 87% on a test dataset. The binary mask 
obtained for each class from Mask-RCNN output was further 
analyzed to provide safe (avoiding apples that are occluded or not 
safe to pick for the given view) and reliable (providing right picking 
orientation by considering the fruits immediate surrounding) 
harvesting decision to the robot. With this proposed approach, the 
system was able to identify apples that were safe to harvest with 92% 
accuracy and was able to predict the fruits challenging to harvest with 
91% accuracy compared to ground truth data. Though the current 
robotic system for picking may not utilize the variable approach 
direction, new capability of the vision system provides an opportunity 
to improve the overall harvesting system in the future. 
 
In addition to branches and other fruit, trellis wires also presented 
significant obstacles to robotic picking and thinning. Trellis wires 
were only partially visible (in segments) in images due to their thin 
size, and occlusion due to branches and leaves. A trellis wire 
detection technique was developed utilizing binary line 
descriptors and Haar-like features were combined at the decision 
level. Segments of the trellis wires detected by the vision system 
were combined using Hough Transform so that wire location could be estimated in the occluded 
regions as well. Preliminary analysis showed the trellis wire detection F1-score of 83% (Fig. 3). This 

Fig. 2: The row data for harvesting based on 
MaskCRNN 



technique can be integrated with the current robotic harvesting system to avoid robot collision with 
trellis wires.  

 
Fig. 3: Trellis wire and trunk detection to avoid end-effector and trellis wire collision. Even though only parts of the 

trellis wire are visible, the algorithm can reliably estimate the occluded part of the trellis wire assuming a linear 
geometry.  

  
The additional information gained 
with the improved algorithms, and 
the improved mechanism 
(additional degree of freedom – 
controlling the twist of the gripper), 
allowed us to catch the fruit based 
on the stem orientation and to twist 
each fruit based on its 
specific/particular orientation. 
Based on the tests and 
improvements over 3 years of this 
project, we reached a good result of 
picking fruits. Some challenges we 
faced in picking included picking 
with spurs or small brunches  (7%-
15%), and bruising rate of 6%.  
 “Blocked Apple”  - an apple which 
we identified as one we cannot pick, are 
left behind in the sections we picked  (Fig 4)  
 
We took more than 20,000 images to train the system with a better understanding of the 3D location 
of trellis wire and the fruits, which were used in the algorithm discussed earlier for trellis wire 
detection.  
 
Objective 2,3 and 4: Full-scale, integrated robotic system development and evaluation 
As discussed before, we designed and improved a full-scale robotic harvesting systems (Fig. 5) and 
manufactured two versions of those (the latest improvement was completed in Sep 2021). The 
commercial-ready mechanical prototype was used in the field trials in Washington and Israel. The 
robotic picking mechanism was integrated with a dedicated platfrom from Automated Ag Systems 
and a dedicated convey system and Bin Filler from Maf Roda Industries, for evaluating the completed 
(end-to-end) harvesting process. Based on the feedback from the growers, we added a sorting/clipping 
station (“table”) before the bin filler to enable the growers to implement the sorting /clipping 
manually before we automate this task in the future. 
 
Due to the delays, the performance of the entire system was not tested in 2021. A quick video 
demonstrating the latest machine and its operation in a commercial orchard in WA can be found at 
https://youtu.be/NjPgO4VnmN8. 

Fig. 4: Sample of before and after harvesting by the machine   

https://youtu.be/NjPgO4VnmN8


 

  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 

Fig. 5: End-to-end system developed for robotic fruit harvesting, conveying and bin filling. 



In 2021, we also completed an initial evaluation of the full-scale harvesting robot in a V-traillis 
canopy architecture to assess the practical usefulness of the same Robot frame for varying canopy 
architectures. We will need further studies to come up with a improved system for such applications 
(Fig 6). 

  
 
 
 
Obj. #5: Investigate machine vision and robotic end-effectors for blossom and green fruit thinning  
 
 
Blossom Thinning: Flowers are densely located in clusters making individual flower segmentation 
highly challenging. Furthermore, for the robotic system to operate efficiently, it would be 
sensible to estimate the number of flowers in each cluster and other orchard parameters such 
as trunk diameter, branch diameter, and cluster spacing to thin a portion of excess flowers en 
masse instead of localizing and removing individual flowers. The proposed approach involves 
segmenting the flower clusters, counting the number of flowers per cluster, and removing a proportion 

Fig. 7: Detection result achieved by Mask R-CNN algorithm compared with ground truth dataset. Objects inside blue, 
and red polygons indicate ground truth and detection results respectively; (a) Scifresh apple blossoms; (b) Envi apple 
blossoms. Mask R-CNN was robust enough to detect true blossoms that are even missed by humans during manual 
labelling procedure. 

(a) (b) 

Fig 6. V shape harvesting using the lower two self total 4 robotic arms  



of flowers. The effectiveness of automated/robotic thinning heavily depends on blossom detection and 
estimation of spatial distribution of blossoms under varying background and lighting condition.   
 
To detect flower clusters, a deep learning (Mask R-CNN) based unified semantic segmentation 
architecture was used. The algorithm takes single image as an input and returns all the instance of 
flowers/blossoms at pixel level for precise localization of blossoms. Additional images were collected 
from commercial apple orchard in WA during hand blossom thinning in daylight condition without 
background manipulation. The image dataset constituted more than 200 images with ~10,000 blossom 
instances. Mask R-CNN based deep learning algorithm was powerful in learning features of blossoms 
and was capable of correctly performing pixel level detection of blossoms in images that were never 
seen by the deep learning model before. Fig. 7 shows the comparison between the human labelled 
ground truth (blue polygons) and detection results (red polygons) achieved by Mask R-CNN algorithm. 
Furthermore, with the additional dataset, it was observed that blossom detection in deep learning 
algorithm was minimally affected by background sky which happens to have similar appearance as 
blossom. The system achieved a mean average precision (mAP) of 0.86 in detecting blossoms in apple 
trees.  
 
In addition to flower cluster segmentation, efforts were made to 
estimate the flower distribution in canopies. We developed and 
implemented an end-to-end attention-guided regression-based deep 
learning network to estimate flowers' spatial distribution and count 
leveraging a point annotation. The proposed approach works on 
simple point annotation and bypasses the individual object 
detection, and segmentation, making the spatial distribution and 
count estimation problem simpler and computationally lighter. The 
algorithm generated a heatmap identifying the highly probable 
flower regions. Fig. 8 shows the result of the proposed algorithm 
where the density map (heat map) is overlayed on the top of the 
canopy image. Each image is divided into grids to compute flower 
distribution and count in a localized region. The proposed deep 
learning-based network showed a promising result with an accuracy 
of 87.2%  to count flowers in images with an average of 89 flowers. 
The achieved density map can also be easily combined with the 
cluster segmentation results discussed earlier to compute number of 
flowers/clusters, which can then be used to develop thinning rules 
for automated flower thinning. 

Furthermore, in 2020 we investigated and evaluated the 
performance/efficiency of multiple off-the-shelf end effectors for 
blossom removal. We tested the operation of pneumatic hose 
(pressurized air), Waterjet (high-velocity pressurized water), 
electrically actuated brush system, and commercially available 
bloom thinner (Bloom bandit/Buster; Fig. 9). The pneumatic hose 
and Waterjet were ineffective, often dragging the remaining blossoms in the water/airflow direction 
and badly affecting surrounding flowers that need to be saved. While effective on some occasions, the 
electric brush system did not easily engage with the blossoms, often rotating and weakening the stem 
during operation. The commercially available handheld bloom thinner was able to perform targeted 
thinning. Since the accompanying end-effector (spindle-string configuration) was of fixed size, 
different end-effector configurations such as varying spindle length, string length, string spacing were 
developed and tested. The end-effector with shorter strings achieved better control over thinning.  

Fig. 8: Flower spatial distribution and 
count estimation using deep learning 
based algorithm using point annotation. 
Heatmaps show the highly probable 
flower regions which can be used to 

      



 
Learning from the experiments in 2020, in 2021, a 
miniature spindle-string end-effector was 
developed and tested in a commercial apple 
orchard. The system consisted of custom-designed 
end-effector connected with a variable speed 
electrically actuated motor. Experiments were 
conducted varying the rotational speed, spindle 
string length, and approach direction to the flower 
cluster. The custom-designed effector was effective 
in mechanically removing a proportion of flowers. 
 
Green Fruit Thinning: Upon analysis of RGB images for 
green fruit detection, it was found that segmentation of green fruit from apple orchards would be 
challenging in visible spectrum. Green fruits happen to have similar appearance as apple leaves hence 
limiting the number of features that can be useful for segmenting green fruit. This year multispectral 
image data were collected during green fruit thinning season. Multispectral images have clear 
advantage over RGB image as more spectral information are available. This work will continue in the 
future. 

(a) (b) (c) (d) 

Fig.9: (a) Pneumatic hose end-effector; (b) Waterjet end-effector; (c) Electric wire brush; (d) Commercially 
available bloom thinner. 

Fig.10: Setup for actuation mechanism for 
costom-designed end-effector system 
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1. OBJECTIVES 
1. Formulate objective pruning rules by integrating pruning strategy desirable for 

robotic/automated harvesting and the strategy currently used by growers in fruiting wall apple 
(e.g. formally trained) and cherry (e.g. UFO) orchards;  

2. Develop a machine vision system to locate pruning branches in those two crop architectures. 
3. Integrate and evaluate a robotic pruning machine. 

 

Originally Proposed Timeline of Project Activities 
 

Objectives# Research Activities 
Time (Calendar Years and Quarters) 

2018 2019 2020 
Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 

 
1 

Develop pruning rules                 

Identify pruning branches                 

2 Acquire canopy images and create 
3D structure of trees                 

3 Evaluate integrated pruning robot         
 

2. SIGNIFICANT FINDINGS 

1. Professional pruners/managers consider formal guidelines when identifying pruning 
branches in dormant apple canopies. In practice, however, the branches pruned by 
professional pruners were inconsistent with stated guidelines and demonstrated 
substantial amounts of variability. 

2. Deep learning techniques are capable of analyzing canopy images to estimate various 
parameters such as size and location of branches. 

3. Our integrated pruning system is capable of reconstructing trees in 3D, identifying 
cutting points, safely navigating to cutting points, and executing pruning. Future efforts 
will focus on making our system more robust in complex orchard environments. 

 
3. METHODS 

3.1 Objective #1: Pruning Rules and Pruning Branch Identification (Carnegie Mellon – Lead; 
WSU - Participant; OSU - Collaborator) 

In the past it was found that, for the tall spindle tree architecture, the pruning process can be captured 
by four basic rules (Karkee et al., 2014); i) remove diseased or dead wood/branches; ii) remove 
branches longer than a specified length; iii) remove branches larger than a specified diameter; and 
iv) remove branches to maintain a specified spacing. Lehnert (2015) proposed eight rules for pruning 
tall spindle apple trees, some of which were similar to four different rules proposed by Karkee and 
Adhikari (2014). It was also claimed that two major rules; i) remove two to four largest limbs, and; ii) 
remove all vertically growing limbs (40 degree or less); will cover more than 90% of pruning job in 
tall spindle apple orchards. These previously developed rules are essential for the automated pruning 
of tall spindle apple orchards.  

However, more work was necessary to develop and apply pruning rules to identify pruning branches 
in other tree architectures including formally trained apple architectures. Engineers, horticulturists 
and growers have been working together to explore pruning methods for the proposed canopy 



architectures. Special consideration was given to the desired limb and fruit distribution for robotic 
apple harvesting that include the need of presenting fruit individually and without any obstruction by 
the branches, trunks, or trellis system.  

Similar to Karkee et al. (2014), the pruning rule formulation process included observation and 
analysis of the work of experienced pruners and supervisors. Experienced pruners were selected from 
commercial orchard crews. They were asked to individually tag pruning branches on randomly 
selected fruit trees using unique color tags. To keep tagging independent between workers, tags were 
removed from the tree before another worker was asked to tag the pruning points on the same tree. 
Video and color images of each tagged tree were captured.  

Pruning branches identified by workers as well as the total number of branches were located and 
counted for each tree. Videos and still images were analyzed to look for the pruning patterns and 
process each worker follows. A set of objective pruning rules are being defined using; i) expert’s 
knowledge captured from engineering team based on their need for robotic harvesting; ii) 
horticulturists and growers based on their understanding of training practices, tree architectures, and 
physiology; and iii) from experienced workers based on pruning processes they follow. We visited 
with different collaborators to get their input on the pruning strategies to support the process of 
pruning rule identification.  

After objective pruning rules are defined, the 3D tree structure created in Objective 2 and pruning 
rules can be used to identify branches for pruning. For this task, novel deep learning-based methods 
were used to distinguish trunk, main branches and sub-branches or laterals of a tree. Geometric 
parameters of tree canopies including branch size (diameter), branch length, and branch spacing can 
be estimated using 3D measurements and corresponding color images. Once all the topological and 
geometric parameters of trunks and branches are estimated, decisions can be made using pruning 
rules to determine which branches need to be pruned. 

3.2. Objective #2: Machine Vision System (WSU and Carnegie Mellon – Co-Lead; OSU - 
Collaborator) 
Under this objective, we focused on creating 3D structures of apple and cherry trees trained in 
modern fruiting wall architecture (e.g. formal training for apples, UFO architecture for cherries). 
Images were acquired using a novel stereovision system developed by Co-PI Silwal. This stereovision 
system features a synchronized camera flash and shutter (called active lighting) to improve point 
cloud generation from stereo image pairs. Six stereo image pairs were collected with each triggering, 
and point clouds from each stereo-pair are fused to create a dense point cloud.  

A complementary vision system (called Coordinated Depth Cameras) has also been developed that 
generates 3D point clouds directly using multiple coordinated time-of-flight cameras. The system is 
mounted on the end of the UR5e robot and can function alone or in tandem with the stereovision 
system. The Coordinated Depth Cameras concept relies on a global camera, a local camera, and a 
position tracking camera. An initial image of the entire tree is taken with the global camera. The 
global camera could be Co-PI Silwal’s stereovision system or a dedicated global time-of-flight or 
stereo camera. This initial image serves as a framework of points for the local camera. The UR5e then 
begins to “scan” the tree at close range with the local camera along a planned trajectory. The local 
camera generates a series of high-resolution point clouds that are mapped to the global point cloud as 
the tree is scanned. This mapping of local points to the global framework is made possible through 
the tracking camera. The tracking camera continuously estimates the relative position of the local 
camera to the global camera. Finally, the iterative closest point algorithm is used to complete the 
mapping of local points to the global framework. Once the scanning is complete, we are left with a 
very detailed 3D point cloud of the tree structure that can be analyzed to make autonomous pruning 
decisions. 



After image acquisition and 3D point cloud generation, a state-of-the-art object detection algorithm 
(Faster R-CNN) proposed by Ren S., et al. (2015) was used to identity branching points from color 
images. These branching points are strong visual ques that detect branch occlusion necessary to 
segregate individual branches. The link between the detected branching points was associated using 
the skeleton image generated by the Generative Adversarial Network (GAN). The output of the GAN 
is a binary image with an array of connected binary pixels that traced the mid-section of branches in 
the color images. A multi-channel GAN was used to generate a skeleton image for branches and main 
trunk. Once the skeleton was identified, the curvature of the branches and trunk was warped using the 
depth information obtained in the previous steps to reconstruct the 3D models. Using this info, the 
length and size (diameter) of each branch can be estimated. Length can be estimated using the starting 
and end points of the branches. To estimate diameter, the skeleton of the tree can be overlaid on top 
of the color images taken from the same perspective. Then, the number of pixels in the orthogonal 
direction of the branch skeleton can be counted at the base of the branch (2 to 5 cm from the branch-
trunk junction). The resulting 3D skeleton and geometric parameters can be used in identifying 
pruning branches as discussed in Objective 1. 

A complementary machine learning approach has also been developed that generates a 3D tree 
skeleton directly from point cloud data (as compared to first using images). A point cloud from Co-PI 
Silwal’s stereovision system or the Coordinated Depth Cameras system is processed to create a graph 
of “superpoints” and “edges.” Each edge in the graph is processed by a neural network to determine 
its validity. Valid edges are used to determine the tips and trunk of the tree. The tips and trunk of the 
tree are input into an evolutionary algorithm that “grows” the tree structure between the trunk and the 
tips. The output of the evolutionary 
algorithm is a tree skeleton with trunk, 
support, and leader labels. Secondary 
branches can be identified using the leader 
labels. This tree skeleton can then be used 
for autonomous cutting point selection. 
 
3.3. Objective #3: Integrated Robotic 
System Evaluation (WSU–Lead; CMU 
Participant; OSU Collaborator) 
In the proposed work, two pruning shear 
end-effectors were developed and 
integrated with a robotic manipulator to 
carry out pruning tasks. The machine 
vision system was integrated with the 
hardware system for complete system 
evaluation in the lab and field 
environments. 

A UR-5e robot arm from Universal Robots 
was used for developing an automated 
fruit tree pruning system. This manipulator 
demonstrated good speed, reach and 
maneuverability, and was acquired at both 
Collaborator Davidson’s and PI Karkee’s 
labs in addition to the similar system 
available at CMU. This facilitated 
collaborative system development, 
integration, and evaluation. Developing an 

Fig. 1. Simulation of branch pruning in Gazebo. A 3D 
OctoMap of an apple tree has been created from a 3D point 

cloud. Five cutting points were selected randomly. The UR-5e 
traces a collision free path. 

Fig. 2. To complete the final approach to a cutting point, the 
UR-5e uses a hybrid image/force controller instead of 3D point 

cloud data. 

 



integrated software stack for robot control is key for a 
successful pruning system. Our approach included the 
following:  
 
1) Create a 3D point cloud of the orchard environment 
2) Generate collision free paths to the identified cutting 

points using FREDS-MP (Fig. 1) 
3) Execute a controlled approach to the cutting point 

using inverse kinematics 
4) Cut the identified branch 

The planning framework we utilize is called FREDS-
MP, which aims to increase the planning speed and 
overall throughput of the robotic system. FREDS-MP 
works by precomputing a database of optimistic 
trajectories offline, utilizing these trajectories during the 
online phase as effective priors, and ordering the cutting 
points more effectively. Additional controls have been 
developed to increase the accuracy of the UR-5e’s 
approach to the cutting point while minimizing risk to 
the robot and the environment. Oftentimes, the 3D point 
cloud of the tree is not a perfect reconstruction due to a 
variety of environmental or technical factors. These 
inaccuracies could cause unintended collisions during 
the UR-5e’s approach that cause damage to the tree, the 
UR-5e, or both. As such, a hybrid controller has been 
developed to increase the accuracy of the UR-5e’s final 
approach (15-30 cm) to cutting points using images and 
force data instead of 3D point cloud data (Fig. 2). 
Segmented images of pruning branches and the end 
effector were generated using another GAN to enable 
robust vision-based control. The vision-based controller 
navigates the end effector to the pruning branch until 
contact is made. Once contact is made, a force-feedback 
controller was developed using the UR-5e’s force torque 
sensors to navigate the end effector to the pivot point in 
the shears without creating high forces. This hybrid 
controller was trained in simulation using proximal 
policy optimization. 

 

4. RESULTS & DISCUSSION 
4.1 Objective #1: Pruning Rules and Pruning Branch 
Identification 
Our hypothesis for automated pruning rule generation was that the observation of commercial pruning 
operation and analysis of images/3D models captured before and after pruning could lead to objective 
pruning rules. To test this theory, we assigned professional pruners to follow commercially adopted 
pruning rules and prune forty dormant apple trees. For these canopies, the camera system was placed 
in a stationary location approximately one meter in front of the canopy and we collected before and 
after pruning wide angled stereo images. Later, point clouds from the two pre/post pruning datasets 
were overlaid to identify individual cutting points. Figure 3 shows this underlying concept. 

A 

B 

C 

Fig. 3. Pre/post pruned point cloud overlay. 
(A) pre pruned point cloud. (B) post pruned 

point cloud. (C) overlaid point cloud. The 
intersections of green and orange points 

indicate cutting points. 



A summary of the critical components of the ideal pruning rule for dormant apple trees are listed 
below for discussion. A detailed description of the pruning rule practiced by professional pruners is 
included in our 2018 annual report (submitted on Jan 16, 2019). 
• Use of a BCA tool to optimally determine the appropriate number of fruiting location per unit 

length of the lateral branches. 
• Fruit spacing was considered an important parameter. Minimum fruiting zone spacing was 

approximately 4 inches as anything closer might lead to clusters of fruit during harvest season.  
• Length of fruiting laterals was another important factor. Laterals longer than 8 inches were 

trimmed. 
• Considerations were also made to remove vertical fruiting sites and those right over or under the 

horizontal branches. 
• Selectively remove smaller buds from a cluster. Remove buds too close to the trellis wire, shoots 

under the branches, and vertical fruiting zones. 
• Remove dead and diseased branches and tie shoots closer to the edge of the branch to fill gaps if 

lateral branches are short. 

The analysis of the pre/post pruning data 
revealed inconsistency in following the strict 
guidelines for pruning apple canopies. In 
practice, branch diameters were assessed 
visually and intuitively without the use of the 
BCA tool. This led to suboptimal selection of 
number of fruiting location per unit length of 
the lateral branches. Additionally, the 
minimum gap between fruiting locations 
were estimated using the width of the palm 
as a unit of measurement which varied from 
one pruner to another. These differences 
between the ideal and practiced manual 
pruning created large amounts of variation in 
the data for training a machine learning 
agent. As such, these revelations led us to 
focus on synthesizing a pruning rule by just 
utilizing the geometric measurements and 
topological parameters. We realized the most 
important aspect of pruning is the uniform 
distribution of fruit, therefore we implemented 
the following simplified pruning rule that 
prioritizes fruit distribution. 
1. Estimate diameter and length of lateral 

branches and use the BCA equation to 
determine optimal number of fruiting 
locations per unit length of the lateral 
branches. 

2. Count and measure the length of secondary 
branches and only keep secondary 
branches with minimum of 4 inches gap.  

In UFO cherries, pruning rule was highly 
simplified (based on the experts knowledge) 
to ‘remove all lateral branches on upright 

Fig. 4. A multi-view stereo camera system imaging dormant 
apple canopies. Camera system includes a linear slide. 

 

Fig. 5. A 3D point cloud of the tree structure generated by 
the Coordinated Depth Cameras system. 



fruiting offshoots’. 
4.2 Objective #2: Machine Vision System  
Secondary branches protruding towards and directly away from the camera are missing in the 3D tree 
structure when only one viewpoint is used. To mitigate this limitation, Co-PI Silwal from CMU 
designed a new camera system that images the canopy with two stereo cameras systems (Fig 4). 
The new camera system has two stereo pairs, one at a lower height for front view of the canopy and 
another at a higher and angled position for the top view. Both the top and bottom cameras travel along 
the linear slide to three different locations and provide a total of six different views of the canopy. 
The fused point clouds from six different locations provided a more detailed 3D structure of the 
canopy. In addition to multi-view stereo, like its predecessor, this new camera system is also 
equipped with active lighting that generates consistent image quality regardless of ambient lighting 
condition. Additionally, our Coordinated Depth Cameras system can operate alone or further improve 
the quality of the point clouds obtained by Co-PI Silwal’s stereovision system. A sample point cloud 
obtained by the Coordinated Depth Cameras can be observed in Figure 5.  
 
To implement any pruning rule, the vision 
system should be able to estimate key aspects of 
tree canopies such as branch and trunk shapes 
and sizes. Currently, we have implemented a 
variation of a deep learning technique called 
Generative Adversarial Network (GANs) that 
directly outputs a 2D skeleton image of just the 
secondary branches. This is advantageous over 
conventional computer vision algorithm as it 
bypasses several intermediate processing steps 
such as pre-processing, multi-class segmentation, 
and post-processing steps that could potentially 
add more inaccuracies.  

Our complementary skeletonization algorithm 
has demonstrated the ability to label point clouds 
directly and generate a 3D tree structure 
identifying tree trunk, supports, leaders, and 
secondary branches. The output of this algorithm 
can be observed in Figure 6. This tree skeleton 
can then be used to autonomously determine 
cutting points for pruning. Further work is 
going on to estimate desired geometric and 
other parameters of trees. 

4.3 Objective #3: Integrated Robotic System 
Evaluation  
In 2019, we developed an integrated pruning 
system and evaluated its planning and 
execution performance in a lab environment. 
The pruning system is shown in Figure 7, 
consisting of the UR-5e equipped with an end-
effector and an in-hand Intel RealSense D435 
camera. The end effector consisted of a 
pneumatically actuated four-bar linkage with 
custom-ground blades. Initial tests showed the 

Fig. 6. Labeled tree skeleton output from the 
skeletonization algorithm. 

Fig. 7. Our initial pruning robot setup, consisting of a UR-
5e robot arm, an Intel RealSense D435 camera, and a 

custom pneumatic pruning end effector. 



end-effector could consistently cut branches up to 10mm in diameter near the pivot point of the 
blades. Cutting points could be manually selected on a 3D point cloud, and the UR5 could 
successfully navigate the end effector to manually selected cutting points. 

In 2020, our pruning robot was further optimized. A battery-powered, electrically actuated pruning 
end effector was modified to interface with the UR-5e and support remote actuation. This new 
pruning end-effector is capable of pruning branches up to 25mm and has no need for compressed air. 
The UR-5e was mounted on the linear slide with Co-PI Silwal’s stereovision system to add an 
additional degree of freedom for FREDS-MP. Additionally, the Coordinated Depth Cameras system 
was mounted on the end of the UR-5e with the improved end effector. The refined prototype was 
further evaluated in labs using actual trees collected from commercial orchards. 
 
In 2021, we integrated all the components of 
an autonomous pruning robot (Fig 8). The 
Coordinated Depth Cameras system was 
capable of creating detailed 3D point clouds, 
and our machine learning skeletonization 
algorithm was capable of autonomously 
selecting cutting points. FREDS-MP was 
capable of navigating our pruning end 
effector to the autonomously selected cutting 
point, and our end-effector was capable of 
autonomous actuation to cut the pruning 
branch. The system was brought to field 
evaluation in a commercial UFO cherry 
orchard. However, only limited test cuts were 
performed because of new challenges faced 
in the complex orchard environment and 
practical issues on robot operation caused 
severely cold weather. We outlined the steps 
we needed to take to have a successful 
demonstration and have been working 
towards these goals. Our Coordinated Depth 
Camera has been optimized since the 
attempted demonstration, and our vision-
based controller GAN is being further trained 
for robustness in complex orchard environments. We have identified a more efficient mounting 
orientation for the UR-5e, and we are optimistic our next demonstration will be a success. We will 
continue to evaluate the system through additional funding provided by USDA to our team. 
 
  

Fig. 8. The final pruning robot used for our 2021 
evaluation, consisting of the UR-5e robot arm, the 

stereovision system, the Coordinated Depth Cameras 
system, and a custom electric pruning end effector. 



EXECUTIVE SUMMARY 
 
Project Title: Towards automated canopy and crop-load management in tree fruit 
 
Key words: Pruning robot, automated pruning, deep learning, machine vision, robotics 
 
Abstract: The widespread adoption of robotic harvesting systems requires deliberate canopy 
management to grow fruit in easily accessible locations. Therefore, it is necessary to automate canopy 
management in tree fruit so that labor use can be minimized throughout the entire production process. 
Specifically, this project focused on the automated pruning of fruit trees. The objectives of this 
project were to: i) Formulate objective pruning rules by integrating pruning strategy desirable for 
robotic/automated harvesting and the strategy currently used by growers in fruiting wall apple (e.g. 
formally trained) and cherry (e.g. UFO) orchards; ii) Develop a machine vision system to locate 
pruning branches in those two crop architectures; and iii) Integrate and evaluate a robotic pruning 
machine. To develop objective pruning rules, 3D point clouds were collected of 40 dormant apple 
trees before and after pruning by professional pruners. We found that, although professional pruners 
consider formal guidelines, in practice the branches pruned were inconsistent with the stated 
guidelines and demonstrated substantial amounts of variability between pruners. As such, we adopted 
two simple rules that prioritize the uniform distribution of fruit. Two complementary machine vision 
systems were developed to capture 3D tree structure. An active lighting stereovision system was 
developed consisting of two stereo pairs that utilized a linear slide. The stereo pairs would take 
images from three positions along the linear slide to provide a total of six perspectives of the tree to 
minimize branch occlusion in the resulting 3D point clouds. Additionally, we developed a 
Coordinated Depth Cameras system that directly generates 3D point clouds without taking images 
using multiple time-of-flight cameras. The Coordinated Depth Cameras system could be used alone 
or in tandem with the stereovision system. These machine vision systems produced highly detailed 
3D point clouds that were used to make autonomous pruning decisions. Again, two complementary 
approaches were developed to autonomously identify cutting points. One approach utilized a deep 
learning technique called a Generalized Adversarial Network to output 2D skeleton images of 
secondary branches that could subsequently be used to measure branch length and diameter. A 
complementary approach utilized an evolutionary machine learning algorithm to operate directly on 
3D point clouds instead of images. The evolutionary algorithm produced a 3D tree skeleton with 
labels for the tree trunk, support, leaders, and secondary branches. The information from these tree 
skeletons could be used to autonomously identify pruning branches and cutting points. A motion 
planning algorithm called FREDS-MP was used to navigate our UR-5e robotic manipulator and our 
custom pruning end-effector to the desired cutting point. A hybrid vision-based/force-feedback 
controller was developed to increase the accuracy of the final approach to cutting points without 
causing damage to the robot or the environment. The pruning branch could then be automatically cut 
by our pruning end-effector. In 2021 winter, a fully integrated pruning robot was evaluated at a 
limited scale in the field, but the orchard environment posed new challenges that our team is currently 
addressing. An improved and more robust robotic system will be evaluated in the orchard 
environment in recent future using additional funding our team (led by collaborator Joseph Davidson) 
have secured from USDA. 



FINAL PROJECT REPORT 
 
Project Title:  Novel automatic crop health observer   
 
PI:   Curtis Garner 
 

 
Report is forthcoming. 



FINAL PROJECT REPORT 
 
Project Title:  Novel on-the-fly variable-rate air flow & distribution sprayer   
 
PI:   Curtis Garner 
 

 
Report is forthcoming. 



PROJECT PROGRESS REPORT 
 
Project Title: Smart Orchards Year 2 + Connectivity (no-cost extension approved to 2022) 
 
PI:       Steve Mantle   Co-PI (2):          Lav Khot                    
Organization: Innov8 Ag Solutions  Organization:   WSU 
Telephone: 509-795-1395   Telephone:       509-786-9302 
Email:  steve@innovate.ag  Email:                lav.khot@wsu.edu  
Address:          103 E Main St Ste 301  Address:           WSU IAREC, 24106 N Bunn Rd. 
Address 2:              Address 2:                  
City:            Walla Walla   City:               Prosser 
State/Zip:          WA 99362   State/Zip:         WA 99350 
 
 
Cooperators: Columbia Reach/Chiawana Orchards – Shawn Tweedy / Chris Hammond (area), 
Martin Ramirez (ranch); Washington Fruit & Produce - Gilbert Plath & Aylin Moreno (area), Ramon 
Cuevas /  Orlando Joaquin (ranch); WSU – Lav Khot (weather, imaging, data interpretation), 
Bernardita Sallato (root nutrient uptake), Lee Kalcsits (tree physiology w/ microtensiometers & 
dendreometers), Jenny Bolivar-Medina (extension).  Sensor providers – Arable (weather, soil 
moisture), Ceres Imaging (fixed-wing imagery), CropVue (insect traps), Davis Instruments (weather), 
DynaMax (soil, plant, & weather sensors), Green Atlas (fruit & canopy mapping), MeterGroup 
(weather station API access), Predictive Nutrient Solutions (soil lab testing), SmartGuided Systems 
(spray mapping), SoilOptix (soil nutrients), Thingy (weather, soil moisture), Tuctronics/AgriNET 
(weather, soil moisture, water pressure, PAR).   
 
Percentage time per crop:  Apple: 100% Pear:  Cherry:  Stone Fruit: 
 
Total Project Funding:     $90,000 expenses 
 
Budget History: 
Budget 1  
Organization Name:  Innov8 Ag Solutions Contract Administrator:  Steve Mantle 
Telephone: 509-795-1395   Email address:   steve@innovate.ag 
Supervisor or Station Manager name and email address (if applicable):   
 

Item 2021 2021 (optional 
connectivity 

add-on) 
Salaries   
Benefits   
Wages   
Benefits   
Equipment 3,000 10,000 
Supplies   
Travel   
Miscellaneous “as a service” 27,000 20,000 
Plot Fees   
Total 30,000 30,000 

 
 

mailto:steve@innovate.ag
mailto:lav.khot@wsu.edu


Budget 2  
Organization Name: WSU-CAHNRS Contract Administrator: Katy Roberts  
Telephone: 509-335-2885  Email address: arcgrants@wsu.edu 
Supervisor or Station Manager name and email address (if applicable):  Samantha Bridger, Grant 
Coordinator, prosser.grants@wsu.edu  
 

Item 2021 

Salaries  
Benefits  
Wages $23,776 
Benefits $2,378 
Equipment  
Supplies $2,000 
Travel $1,520 
Plot Fees  
Miscellaneous   
Total $29,674  

Footnotes: Wages of $23,776 plus $2,378 benefits will partially support two graduate students during field season ($29.72/h 
x 20/week x 32 h [GRA-1] and x 16 h [GRA-2]) who will work closely with the PI-Khot in field data collection, data 
analysis and reporting. Supplies include replacement drone spare parts (Propellers, Batteries, Landing gears, etc.; $1,200) 
and subscription to a Pix4D software ($750) used for geospatial data analysis. Travel ($1,520) includes smart orchard data 
collection trips (110 miles/trip x 10 trip x 0.58/mile x 2 vehicles x 2 sites) and field day travel for the crew ($128).   
 
 

Original Objectives: 
1. Maintaining an array of connected in-field sensors as well as through-season high resolution aerial 

multispectral and thermal imagery collection & analysis.  
2. Maintaining a data warehouse and provide access to raw data and layered data products to end user 

via a web and/or app interface.  
3. Organize ‘field days’ for growers, researchers, & other interested parties to learn more about data 

and how it’s usage toward in orchard decisioning. 
4. [Optional] Implement a high-speed wireless network w/ edge computing for one smart orchard 

location, to highlight technical & economic viability of addressing orchard connectivity challenges. 
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Progress Report: 
The focus in 2021 was fine-tuning the Chiawana Auburn Ranch [gala] Smart Orchard, and 
deploying the Washington Fruit Grandview Ranch [honeycrisp] Smart Orchard.   
 
The Chiawana Auburn Ranch location continued operating AgWeatherNet stations in/above/out-
of orchard, Davis Instruments temp/RH/wind/PAR in & above orchard, Tuctronics/AgriNET in-
canopy temp/RH + soil moisture + water pressure; while removing Phytech dendrometers + water 
pressure, AquaSpy soil moisture, and Teralytic soil nutrient probes. Through-season drone 
imaging was maintained year-over-year (and also expanded to Grandview). 
 
For both locations this season, we introduced Ceres fixed-wing imagery, SoilOptix 10’ x 10’ soil 
mapping, and GreenAtlas fruit & canopy mapping. 
 
The Washington Fruit Grandview Ranch installation was deployed with the sensors as depicted 
on the below map, with sensor grouping locations selected by strong vs weak vigor based on 
GreenAtlas blossom mapping at the beginning of the 2021 growing season.  

  
 
 
 
 
 



This year we focused on foundational elements of soil & tree/fruit variability across the blocks, so 
that we could better measure inputs (via sensors) against outcomes.  Detailed [SoilOptix] soil & 
[GreenAtlas] tree/fruit variability reports are published at: 

- Chiawana Auburn Ranch – www.innov8.ag/smartorchardv1 
- Washington Fruit Grandview Ranch – www.innov8.ag/smartorchardv2 

These reports were provided to the growers, researchers, & participants tied to this project.  
Additional ‘raw’ data will be made available with the sensor data as we work to consolidate the data 
from the season, which is the reason for the no-cost extension into 2022.   
 
Summarizing the soil data, both blocks now have early & late-season soil data available at a granular 
335 points/acre, to complement the ground-truthed soil data collected by Bernardita Sallato.  When 
mapped, it’s clear that the Grandview block - in particular - has as much as 82% sand at the top of the 
block, ranging down to 19% at the bottom of the block.  While this has implications for soil nutrient 
distribution (as covered separately in Bernardita Sallato’s report), it also has implications to consider 
for 2022 irrigation system design & scheduling – especially given that the sandy soils at the top of the 
block/hill perpetuate water flow down to the 50’ silty clay at the bottom.  The grower & stakeholders 
also have the ability to view the soil texture & nutrient data interactively in a dashboard/app 
(available on web browser, Android & iOS apps) – as show in the below figure 2. As the sensor data 
is ingested from the various sensor providers, we’re working toward overlaying that as well – with the 
below figure showing Meter Group sensor data. 

 
Figure 2 – Soil nutrient & texture data available in the AgriNET dashboard/app, complemented by 
sensor data. 
 
 

http://www.innov8.ag/smartorchardv1
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With the canopy/fruit mapping, we’re now able to identify sections of trees where canopy vigor and 
fruit count/sizing are variable.  This provides the opportunity to explore the relationship between soil 
attributes & vigor/yield elements, as highlighted in figure 3. 

 
Figure 3 – Exploring the relationship between fruit size and soil attributes. 
 
Further, the detailed canopy/fruit mapping correctly predicted yield in bins/acre for both blocks, while 
also identifying areas within each block where there is unrealized potential.  As we wrap up sensor 
data collection for the year, we now have focus areas for researchers and researchers-in-the-making 
(with intent to make this data available for the 2022 WSU Digital AgATH0N, comprised of ag & 
computer science students from WSU & other schools). 
 
From a data warehousing perspective, sensor data is ingested into a SQL database.  Telemetry table 
example is listed in figure 4.  As of November 2021, data is ingested for Tuctronics/AgriNET, Davis 
Instruments, Meter Group, and FloraPulse.  As we extend into 2022, we’re continuing to focus on 
ingesting data that wasn’t provided by sensor partners via API, and plan to have the broader dataset 
ready for the WSU AGATH0N in the Spring, if not sooner. 
 

  



 
Figure 4 – Telemetry example relationships within database ingesting smart orchard sensor data. 
 
We had one primary field day that was promoted by WSU Extension, with strong attendance of > 70 
attendees from across the growing industry, and participation by many of the sensor providers.  
Feedback was very positive, and the remark was made that this was the first field day in many years 
where > 1/3 of the attendees were < 35.  Additionally, we had field visits from a NY grower, 
Washington Department of Agriculture, and the WTFRC. 
 
As a result of data collected throughout the year, we’ve seen multiple research papers submitted for 
publication.  Publications thus far are listed at www.innov8.ag/smartorchard, and include two papers 
by Dr Abhilash Chandel on ET mapping; with a pipeline of additional papers by Dr Chandel 
(submitted to IEEE) as well as high school student Maya Sharma (submitted to Regeneron 
competition). 
 
For wireless connectivity, the Grandview orchard location was selected for an upgrade.  The ranch 
was historically serviced by a CenturyLink DSL connection at ~ 1Mbps.  We looked at several 
options to address the speed issue, including provisioning a Starlink downlink (which was unavailable 
at this location for now).  We partnered with PocketiNET to creatively provision 100Mbps Internet 
connectivity via a wireless link, and deployed WiFi coverage throughout the shop/office area – a 
100x speed upgrade.  We also enabled infrastructure for WiFi connectivity across the orchard, 
deployed LoRAWAN across the orchard – connecting environmental sensors from Thingy.  T-
Mobile’s executive office showed strong interest to provide enhanced mobile connectivity at one or 
both of the blocks for the 2022 growing season.  And finally, we creatively deployed a “mobile ag 
datacenter” from innov8.ag to provide on-demand edge computing at both locations, which processes 
the ~ 1TB of photos/LiDAR data collected at each site when GreenAtlas canopy/fruit mapping is 
performed. 

 
Remote sensing of Orchard -1 and -2  

High resolution remote sensing data was collected using two platforms (1) a small unmanned 
aerial system (UAS) aka drone, and (2) a manned aircraft. The drone (Figure 5) was mounted with a 
five-band multispectral imaging sensor (RedEdge3, Micasense Inc., Seattle, WA) with Blue, Green, 
Red, Red-Edge, and Near-Infrared wavebands and a radiometric thermal imaging sensor (Flir DUO Pro 
R, Flir systems, Wilsonville, OR). The drone also had a skyward facing light sensor (DLS, Micasense 
Inc., Seattle, WA) to embed the solar irradiance data during flight mission into the multispectral 

http://www.innov8.ag/smartorchard


imagery. A calibrated reflectance panel (CRP, Micasense Inc., Seattle, WA) was imaged before and 
after each mission. The CRP imagery and light irradiance was used to correct the multispectral imagery 
for any changes in natural light conditions. The imaging missions were configured using a ground 
control software (Mission Planner, Ardupilot, Open Source Project) to fly drone at an altitude of 100 
m (330 ft) above ground level (AGL) and capture multispectral imagery at a spatial resolution of 7 
cm/pixel (2.8 in/pixel) and thermal imagery at 13 cm/pixel (5.1 in/pixel). The drone based flight 
missions were conducted on 157, 98, 62, 26, and 13 days before harvest (DBH) and 11 and 54 days 
after harvest (DAH) at Smart Orchard-2 (Grandview Orchards, Grandview, WA). Similarly, on 83, 61, 
47, and 14 DBH, and 9 and 75 DAH at Smart Orchard-1 (Columbia Reach Chiawana Orchard, Pasco, 
WA). The collected imagery for respective campaign was stitched in a photogrammetry and image 
stitching software platform (Pix4D mapper, Lausanne, Switzerland) to obtain seamless orthomosaics 
of the study site. Resulting orthomoasics were analyzed in QGIS ver.2.18.16 and R ver.3.6.3 software 
packages as detailed in ‘Data Analysis’ section.   

 
 Our industry collaborator, CERES imaging (Oakland, CA) also collected the manned aircraft 
based imaging missions at both sites. The aircraft had a customized multispectral imaging sensor with 
Red, Green, Red-Edge, and Near-Infrared wavebands and a thermal imaging sensor. The flight missions 
were conducted at an altitude of 1000 m (3280 ft) AGL to capture multispectral imagery at 20 cm/pixel 
(7.9 in/pixel) and thermal imagery at 27 cm/pixel (10.7 in/pixel). The collected imagery was stitched 
and radiometrically calibrated to obtain the reflectance orthomosaic maps of the site. The manned flight 
missions were conducted on 98, 82, 72, 62, 56, 41, and 26 DBH for Smart Orchard-2. Three of those 
campaigns coincided with the drone imagery campaigns. Similarly, for Site-1 the flights were 
conducted on 61, 47, and 10 DBH.  
 In addition to the drone and manned aircraft-based imagery, our team also downloaded imagery 
data from Landsat 7 and 8 satellites, with overpass on 157, 98, 26, and 13 DBH, and 11 DAH. The 
spatial resolution of the satellite imagery was 30 m/pixel (118 ft/pixel).  
 
Imagery data analysis 

Figure 5. Small UAS based imaging and georeferencing hardware used for high-density apple orchard 
mapping (RTK: Real time kinematics). 



All the collected drone imagery was processed to obtain spatial maps of evapotranspiration (ET) and 
canopy vigor (e.g. Normalized Difference Vegetation Index, NDVI) of the imaged high-density apple 
orchard blocks. The evapotranspiration was mapped using the multispectral imagery, thermal imagery, 
digital elevation model, and weather data inputs. The weather data inputs logged at 15 min interval for 
the 24 h period of the day of imaging were acquired from an all-in-one open-field weather sensor 
installed outside the orchard at 1.8 m AGL. All these data were processed using an energy balance 
model; Mapping ET at High Resolution with Internalized Calibration (Allen et al., 2007) modified for 
aerial imagery data (Chandel et al., 2020; 2021). Similar approach was followed to develop canopy ET 
and vigor maps from the manned aircraft imagery data. The Landsat 7 and 8 satellite-based imagery 
data was processed through the standard METRIC model to develop the spatial ET maps.  
The above data products are being analyzed to assess the spatial and temporal variability in canopy 
vigor and water use (ET) within the orchard blocks. The spatial ET mapped using remote sensing data 
will also be compared with the crop water stress and water use measurements collected at the ground 
for selected regions of interests (ROIs).  This will help to identify the best suited platform, or 
combination and suitability of the energy balance approach to estimate crop water requirements. For 
the same ROIs, the canopy vigor derived from remote sensing data will be contrasted and evaluated 
with the ground measurements of soil properties. This will help to understand the effects of soil nutrient 
variability on canopy health and resulting yield variability.  
 
Research findings 
Usefulness of imagery resolution for crop mapping: Small UAS and manned aircraft imagery could 
map the vigor variation (Figure 2) and crop water use (Figure 3) by apple canopies at high spatial 
resolution (7–20 cm/pixel) unlike the Landsat 7/8 imagery that had relatively low spatial resolution (30 
m/pixel). The ET mapped using manned aircraft imagery was relative higher for some imaging 
campaigns (e.g. 98 DBH). This could be due to the overlapped imaging during the operation of the 
overhead sprinkler cooling systems that wetted the canopy, thereby lowering their temperature and 
overestimating the instantaneous ET values. The small UAS based imaging was strictly conducted 
before the overhead sprinkler system actuations to ensure quality of collected data.  
Pertinent to canopy vigor mapping, the overhead sprinkled water on the canopies could have increased 
the reflectance values in the red imaging waveband which eventually reduced the estimates of canopy 
vigor (NDVI) from manned aircraft imagery. Again, the drone-based imagery might aid in better 
capture of the canopy vigor. Landsat 7/8 imagery derived attributes of ET and NDVI could account for 
relatively very low spatial variation. This resolution was not sufficient to segment or separate the tree 
rows from the inter-rows or the soil background. For the heterogeneous canopies such as  the apple 
orchards, spatial resolution is critical to identify site-specific variations in crop and thereby to guide 
specific crop management practices. 
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