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OBJECTIVES 
 
Enhance discovery of genetic factors associated with fruit quality differences using existing and 
in-progress RNA-seq data, along with publicly available genomic resources: 
 
Step 1) identify genetic differences between reference genomes and genomes of interest (‘Golden 
Delicious’ vs ‘Granny Smith’ & ‘Bartlett’ vs. ‘D’Anjou’). 
 
Step 2) use bioinformatic approaches to update the reference genomes to reflect these differences 
creating custom, polished references for analysis of gene expression in each of the genomes of interest. 
 
Step 3) compare gene expression results from the original and polished versions to calculate changes 
in read mapping rates focusing on total reads matched and changes in uniquely matched reads (both 
indicating changes in sensitivity for measuring gene activity) to evaluate the efficacy of the genome 
polishing strategy. 
 

SIGNIFICANT FINDINGS 

Progress on specific objectives: 

• Step 1) Exceeded - We identified genetic differences between reference cultivars and cultivars 
of interest, finding millions of polymorphisms across the whole genome, not just in gene 
sequences 

• Step 2) Exceeded - By sequencing the full genome of ‘Granny Smith’ and ‘D’Anjou’, we can 
account for 10s of thousands of gene sequence polymorphisms captured in recent experiments, 
and we discover virtually all ‘Granny Smith’ and ‘D’Anjou’ genes, not just those shared with 
reference cultivars ‘Golden Delicious’ and ‘Bartlett’ 

• Step 3) Exceeded – We can bring ~10-15% more gene activity data into an analysis by 
mapping to our cultivar specific genomes than to the reference genomes for ‘Golden Delicious’ 
and ‘Bartlett’. Additionally we characterized the effect of polymorphisms on specific genes 

Other important findings: 
• Differences among the genome sequences of Malus and Pyrus cultivars are problematic for 

gene activity measurements 
• Affected genes may be important for understanding important fruit quality traits  
• Apple and pear genomes provide research opportunities beyond gene activity measurements 

that will help us understand pome fruit traits  
• Genomes also facilitate:  

◦  access to more cost-effective gene activity measurements  
◦  deeper comparative genomics in apple and European pear  
◦  access to emerging technologies for gene activity analysis 

 

 

 

 

 

RESULTS & DISCUSSION 



 
Excerpt from the project proposal justification 
Recent technological advances have allowed researchers to measure the activity of all genes in a sample 
simultaneously using a method called RNA-Seq. This approach uses Second Generation Sequencing to 
create hundreds of millions of measurements called “reads” – these are the RNA-Seq basic unit of 
measurement. The reads from each sample are counted with sophisticated software by matching reads 
to the DNA sequence of known genes. This critical step in analyzing RNA-Seq data relies on existing 
knowledge of the genes being measured and assumes that the RNA-Seq data perfectly matches the 
existing genes. These known genes come from sequenced genomes – genomes are the collection of all 
genetic material in an organism, a small fraction (~5%) of which are the genes. A reference genome 
exists only for one apple cultivar, ‘Golden Delicious’, and one European pear, ‘Bartlett’. However, 
commercially produced apples and pears contain substantial genetic diversity within and among 
cultivars. When doing RNA-Seq in other cultivars, these genetic differences (polymorphisms) may 
present substantial challenges when obtaining gene activity measurements in postharvest fruit quality 
experiments. 

For example, genetic differences between ‘Golden Delicious’ and ‘Granny Smith’ may lead to 
loss of signal in RNA Seq experiments because ‘Granny Smith’ reads may fail to be assigned to the 
correct gene (or at all) in the reference ‘Golden Delicious’ genome, due to a mismatch (see Box 1).  

 

 

Box 1.  RNA-Seq data analysis relies on digitally matching reads, letter-by-letter, to the DNA 
sequences of genes. A) rendering of the DNA double helix (top) and flattened version (bottom) more 
typical for visualizing DNA sequences (image credit -http://biology4alevel.blogspot.com/), B) zoomed 
schematic showing how reads are matched, letter-by-letter, to reference genes where the position of 
the read indicates where it matches to the reference, C) ‘Golden Delicious’ example where reads match 
the reference and are mapped successfully, D) ‘Granny Smith’ hypothetical example where 
polymorphisms (dashed regions of the reads) fail to map to the correct position, E) example of a 
polished apple reference corrected for use with ‘Granny Smith’ that allows reads to map successfully. 



The question that led to this project was straightforward: “What is the effect of genetic mismatches 
between genomes in RNA-Seq experiments?” This led to the following hypothesis. 
 

If the genes that explain differences in cultivars tend to be different, and if these differences are 
related to loss of signal in gene activity measurements, then the genes that may explain important 
cultivar differences are the most likely to be missing from gene activity analyses. 

 
Simply put, the genes that make ‘Granny Smith’ fruit different from ‘Golden Delicious’ fruit may be 
dropping out of our gene activity experiments because they are genetically different. If those missing 
genes are involved with important fruit quality traits (like Superficial Scald susceptibility), this creates 
a critical blind spot when we use genomics tools like RNA-Seq to learn about those important fruit 
quality traits. 
 
Analogy of the problem 
The issue described above can be illustrated in a jigsaw puzzle analogy. The RNA-Seq data units, called 
reads, can be thought of as jigsaw puzzle pieces. The reference genome is best thought of as the picture 
that comes printed on the jigsaw puzzle box that can be consulted by the user to guide where to put 
puzzle pieces. The issue with mismatched genomes is that the puzzle pieces do not perfectly match the 
picture on the box (Box 2). A skilled user could probably finish the puzzle if it consisted of a few 
thousand pieces. However, an RNA-Seq puzzle consists of hundreds of millions of pieces, and the 
picture is ~100 times higher resolution than a 4k Ultra HD television. So, necessarily, sophisticated 
software on high performance computers are needed to complete the task.  
 In fact, large portions of the puzzle can be put together using software that does not need a 
reference “picture” – this is how we built gene models early in the project. Yet those pictures were not 
fully complete due to inherent limitations of the process. Assembling a genome is the only way to get 
the whole picture. 
 

 
 

 
 

Box 2. In the puzzle analogy, when the pieces are assembled correctly, they would create the picture 
in “A.” But when using the picture in “B” to guide assembly of the puzzle, the result would be an 
incomplete image in portions of the picture where the two were most different. 

A 

B 



Genetic differences between cultivar specific genomes and reference genomes – Step 1 
Step 1 was to scan the genomes of ‘Granny Smith’ and ‘D’Anjou’ to find differences compared to the 
reference cultivars ‘Golden Delicious’ and ‘Bartlett,’ respectively. We eventually found millions of 
small differences - Single Nucleotide Polymorphisms (SNPs) and small insertions or deletions (InDels) 
in ‘Granny Smith’ apple (5.18 million) and ‘D’Anjou’ pear (5.60 million) (Figure 1). While many of 
these differences were located in between genes, some of these differences did occur in the genes 
themselves (e.g. in one experiment we observed 490,275 polymorphisms across ‘Granny Smith’ apple 
genes). This is critically important, because genes, while they only represent about ~5% of the apple 
and pear genomes, are the target for interpreting gene activity measurements in RNA-Seq experiments. 
Malus and Pyrus genomes over all are known to be polymorphic, but the extent to which genes are 
polymorphic had not been thoroughly examined, nor had there been a detailed exploration of the effect 
on gene expression analyses using a genetically mismatched genome reference.  
 Initially, using our raw ‘Granny Smith’ gene activity data we built cultivar-specific gene 
models and searched for matches to known ‘Golden Delicious’ genes. Then for a small set of genes we 
explored the effect of polymorphisms by comparing gene activity measurements between a gene-by-
gene approach (1 gene at a time - qPCR) vs. the global approach (all ~40,000 genes at once – RNA-
Seq). We published a paper (Hargarten et al. 2018 - https://doi.org/10.21273/JASHS04424-18) that 
included a protocol for improved RNA-Seq data validation, and we also found some evidence that 
polymorphisms can interfere with RNA-Seq gene activity measurements. However, that was based on 
a small number of genes, so we proceeded to the next step which was to modify or polish the reference 
genomes to account for polymorphisms. This would provide a large gene sample size to compare 
experimental results the reference genomes and the polished versions.  
 
Building a better reference for RNA-Seq – Step 2 
The original strategy for Step 2 was to use the raw gene activity data to identify and then modify or 
polish polymorphisms in the genes of reference cultivar genomes. However, during the first year of the 
project, advancements in 3rd generation genome sequencing technology reduced the cost of obtaining 
high-quality genomes. This created the possibility of building new cultivar-specific genomes, instead 
of just polishing the publicly available reference genomes. This new approach was preferred for several 
reasons: 1) a full genome contains all the genes, whereas the raw gene activity data from fruit could 
only be used to polish genes that were active in fruit, 2) a full genome can show us large scale 
differences (not just SNPs and small InDels) that can help explain cultivar trait differences, 3) the full 
genome will include genes that are unique to ‘Granny Smith’ apple and ‘D’Anjou’ pear, showing us 
gene content differences that may help explain cultivar trait differences. 
 We therefore shifted our focus to obtaining data to build ‘Granny Smith’ and ‘D’Anjou’ 
genomes. The price decrease in 3rd generation genome sequencing technology (PacBio) allowed us to 
access the technology, but not enough to allow us to build a genome solely from long read data. Thus, 
we generated a hybrid data set consisting ultimately of 4 kinds of genome data; Illumina, PacBio, 
Oxford Nanopore, and 10x. Except for Illumina, which is a second-generation technology, these 3rd 
generation technologies take advantage of high molecular weight DNA (very long pieces) in either the 
sample preparation or the sequencing step. The resulting larger pieces of data effectively reduce the 
complexity of the genome assembly task. Following the puzzle analogy above (Box 2), this data type 
creates puzzles with larger pieces that are easier to assemble.  
 These multiple data types were assembled and postprocessed via a proprietary method that is 
in development in the dePamphilis lab at Penn State. We predicted based on the volume of data that the 
assemblies would be at least good enough to recover the complex portions of the genome that included 
genes. In fact, the genomes are highly complete, with recovery of fragments that account for virtually 
all of the Malus and Pyrus chromosomes (Figure 2). Further, when assessing the completeness of 
complex plant genomes like these, searching for genes that are shared widely across all plants is 
indicative of completeness. This method is called Benchmarking Universal Single Copy Orthologs 
(BUSCO) – the BUSCO completeness score for the ‘Granny Smith’ genome was 96.2% and for 



‘D’Anjou’ was 97.2%. These metrics indicate that the gene content for the cultivar specific genomes 
are highly complete. This is a substantial increase over the BUSCO scores of ~65% in the gene model 
collections we initially built from the raw gene activity data in ‘D’Anjou.’ These results indicate that 
the ‘Granny Smith’ and ‘D’Anjou’ genomes will contain all the genes that are represented in RNA-Seq 
experiments. 
 With good genome assemblies in hand, we selected one to test the next step of annotation which 
involves scanning the ~600 million letters of DNA code (consisting of A,T,G, & C) to find genes, and 
then identifying them by comparison to known genes. We chose pear because our results suggested that 
Pyrus would benefit more than apple from cultivar specific genomes, and because of synergy with 
Honaas’ pear project (WTFRC Project PR-17-104 “Functional Genomics of ‘D’Anjou’ Pear Fruit 
Quality and Maturity”) that had a substantial RNA-Seq component that would likely benefit from the 
‘D’Anjou’ genome v1.0. Briefly, the annotation process involves using the gene models we built from 
the raw ‘D’Anjou’ gene activity data in the initial phases of the project, combined with all the available 
resources for pear genes at the Genome Database for Rosaceae (https://www.rosaceae.org/). Luckily, 
this included 3 new pear genomes made public in 2019 - Pyrus betulifolia v1.0, Pyrus ussuriensis x 
communis v1.0, and Pyrus communis ‘Bartlett’ v2.0 (https://www.rosaceae.org/). The annotation 
results were concordant with results from the published Bartlett genomes v1.0 (Table 1), further 
indication of the high quality of the ‘D’Anjou’ genome v1.0. With updated RNA-Seq references and a 
catalog of differences between the cultivar-specific genomes and reference genomes, we moved on to 
Step 3. 
 
Polymorphisms between pome fruit genomes interfere with RNA-Seq data measurements – Step 3A 
As stated above, we had data from a small number of genes that suggested polymorphisms might be 
interfering with RNA-Seq based gene activity measurements. Concurrent with the effort to sequence 
and assemble the genomes of ‘Granny Smith’ and ‘D’Anjou,’ we developed a bioinformatics test that 
would help reveal the effects of polymorphisms on RNA-Seq measurements. Counterintuitively, this 
involved making the RNA-Seq reads even smaller. The idea was that if a ‘Granny Smith’ RNA-Seq 
read matched to a ‘Golden Delicious’ gene but had enough small differences that the computer program 
could not confidently match it, then by fragmenting the reads we might be able to separate out the 
pieces that matched perfectly from the ones that contained differences. Then the parts that matched 
perfectly would be successfully assigned, causing a recovery of the gene activity signal. We ran this 
test using a subset of RNA-Seq data from our published ‘Granny Smith’ work (Honaas et al. 2019 -
https://doi.org/10.1016/j.postharvbio.2018.09.016).  

We found that genes that contained differences showed a recovery in gene activity signals, and 
that the signal recovery was flanked by known genetic differences between ‘Granny Smith’ and 
‘Golden Delicious’ (Figure 3A). Unfortunately, this test is not a solution to our problem. This is because 
while fragmentation of the reads helps recover the gene activity signal for genes with differences, for 
other genes the signal becomes ambiguous and therefore reduced (Figure 3B). We then examined the 
pattern across all genes for multiple samples, finding that there is a significant positive correlation 
(R2=0.36±0.02, p=2.2e-16) between recovery of signal and polymorphisms when mapping fragmented 
reads (Figure 3C). 
 With further development this test may be useful to estimate the extent to which gene activity 
measurements are affected by genetic mismatches, especially with regard to tuning the parameters 
during the step where reads are matched to genes. For our purposes, it illustrates that there are pitfalls 
associated with mapping RNA-Seq data across cultivars. These pitfalls can be potentially avoided by 
providing a closer match between the gene activity data and the reference genome. 
 
RNA-Seq mapping improves in a genetically matched genome – Step 3B 
The final tests involve examining how the genomes perform as references for RNA-Seq experiments. 
These tests are straight forward, and our predictions about the increases in the proportion of RNA-Seq 
read data that could be brought into an experiment (15%) were surprisingly accurate. In the initial 



annotation tests, we simply lifted over the gene location and structure information from the reference 
genomes to the new cultivar-specific genomes. This quick and dirty approach allowed us to annotate 
about 80% of the genes in the new genome. Starting with the apple genes that we examined in the 
fragmented read test above, we searched the new ‘Granny Smith’ genome to see if any of those genes 
were annotated. We did not find many genes that met this citeria, which is expected – the genes that 
saw signal recovery are among the most polymorphic in fragmented read analysis, and gene differences 
would cause the lift-over annotation strategy to fail. In Figure 4 there is an example of a gene that was 
different enough to show a signal recovery in the fragmented read experiment, but not too different 
such that it was excluded from the fast, reference lift-over annotation. When we mapped the ‘Granny 
Smith’ gene activity data at high stringency to both the ‘Golden Delicious’ genome and ‘Granny Smith’ 
genome, we saw the signal in the ‘Granny Smith’ genome increase. This result indicated that for at least 
some genes, a matched genome would allow signal recovery compared to a mismatched genome when 
used for RNA-Seq.   
 The last test was to run a full RNA-Seq experiment with the new fully annotated ‘D’Anjou’ 
genome. We ran the analysis 3 times with identical parameters: once with the ‘Bartlett’ v1.0 genome, 
once with the recently released ‘Bartlett’ v2.0 genome, and last with our ‘D’Anjou’ genome v1.0 
(Figure 5). This test shows us that we can assign more RNA-Seq data to pear genes when we used a 
genetically matched reference genome.  Furthermore, we observed that the mismatch rate, deletion rate 
and insertion rate were roughly twice as high when mapping to the ‘Bartlett v2.0’ genome, indicating 
that we could increase the stringency of the mapping parameters and enhance the confidence of our 
gene activity results when using the ‘D’Anjou’ genome. 
 
Perspectives 
The hypothesis that led to the proposal for this work started with the question “What is the effect of 
genetic mismatches between genomes in RNA-Seq experiments?” The answer we now have is that a 
genetically matched genome reference is better for RNA-Seq because we bring more data into the 
analysis at higher stringency, giving us an overall increase in the confidence of our gene activity 
measurements, leading to higher confidence in the biological stories these data tell. 
 By opting to sequence and assemble the whole genomes of ‘Granny Smith’ and ‘D’Anjou’ 
pear, we substantially increased our genomics tool kit for apple and European pear. It is important to 
note that these genomes are not endpoints but starting points for comparative genomics in these species. 
These are called draft genomes because they are works in progress. The area that needs the most 
improvement is the annotation of the genomes. This is a complex and iterative process, yet the first 
pass annotation showed us that there may be genes in the ‘D’Anjou genome that are missing from 
‘Bartlett’ versions 1 and 2. If this is proven to be the case, these genes would be totally absent from an 
‘D’Anjou’ experiment using either of the ‘Bartlett’ genomes. The genomes also provide opportunities 
to leverage higher efficiency RNA-Seq data types that target small portions of genes, but which require 
the cultivar specific genomes we now have. We can now potentially access cutting edge data analysis 
tools, like Salmon (https://combine-lab.github.io/salmon/) which are super-efficient, yet require very 
high accuracy gene models which we now have with the ‘Granny Smith’ and ‘D’Anjou genomes. Last, 
we can now more easily identify genes that are most different between ‘Bartlett’ and ‘D’Anjou’ 
providing exciting new opportunities to discover the genetic basis of the differences between these 
cultivars.  
 
 
 
 
 
 
 



FIGURES AND TABLES 

Figure 1. Cultivar specific genes are polymorphic.  
A) An example of a polymorphic ‘Granny Smith’ gene showing both Single Nucleotide 
Polymorphisms (SNPs) and an Insertion/Deletion (InDel).  
B) CIRCOS plots summarize a scan of ‘Granny Smith’ apple and  
C) ‘D’Anjou’ pear genomes showing polymorphisms (outer trace) and genome data coverage (inner 
trace). Each block represents a large genomic fragment and the entire genomes of apple and pear are 
represented. 
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Figure 2. The Malus and Pyrus genomes we sequenced for this project are highly complete.  
A) ‘Granny Smith’ and ‘B) ‘D’Anjou,’ were lined up against the known reference genomes to estimate 
completeness. A straight and unbroken line from the lower left corner to the upper right corner indicates 
that for every portion of the reference genome, there is a corresponding piece of the cultivar specific 
genome that is in the correct orientation. 
  

 
 
 
 
Figure 3. Polymorphisms can prevent reads from being matched to a reference gene. In panel A, 
Fragmented ‘Granny Smith’ reads match to the reference gene in between polymorphisms (arrow 
heads) that prevented the full length reads from matching to the reference gene.  In panel B, signal is 
lost for a different gene when the reads are fragmented because the match becomes ambiguous – the 
reads match multiple similar genes in the ‘Golden Delicious’ genome. In panel C the pattern across all 
genes detected in the experiment shows that the number of differences (e.g. polymorphisms) is 
proportional to signal recovery in the fragmented read experiment. The genes that were most different 
showed the highest signal recovery when we matched read fragments in between polymorphisms. 
 

 



Figure 3C. 

 
 
 
Figure 4. RNA-Seq signal recovery between to different experiments shows the same pattern. 
When we changed the structure of the read data to fit in between polymorphisms, we saw RNA-Seq 
signal recovery. In a different experiment, we mapped ‘Granny Smith’ RNA-Seq data to a partially 
annotated ‘Granny Smith’ genome as well as the ‘Golden Delicious’ genome. For this same gene, we 
saw a similar signal recovery when using the matched genome. This suggests that genetic 
polymorphisms can attenuate RNA-Seq signals. 
 

 
 
 
 
 



Figure 5. RNA-Seq data mapping was highest when the experimental data and genome matched. 
This result supports the hypothesis that genetic polymorphisms can create artifacts in RNA-Seq data, 
that include loss of signal. A matched genome can correct some of these artifacts. 
 

 
 
 
 
 
Table 1. Annotation summary for Pyrus communis genomes. 
 

Bartlett v1.0 Bartlett v2.0 D’Anjou v1.0 
Number of genes 45,217 37,445 45,981 

Number of genes in known plant gene families 34,444 28,547 36,976 
% Genes in known plant gene families 76.2% 76.2% 80.4% 

 % Gene families detected  93.7% 81% 90.7% 
Number of unassigned genes 10,773 8,898 9,005 

% Unassigned genes  23.8% 23.8% 19.6% 
Number of unique plant gene families  5 13 14 

Number of genes in unique plant gene families  16 73 43 

 
 
 
 
 
 
 
 
 
 



EXECUTIVE SUMMARY 
Project title:  Enhancing reference genomes for cross-cultivar functional genomics 
 
Key words: Postharvest, genome, RNA-Seq, biomarker, gene expression, polymorphism, apple, pear 
 
Abstract: The genomes among apple and pear cultivars differ, and these differences likely impact gene 
activity measurements. We explored methods to account for these differences, finding that cost 
effective genomes are a viable strategy. The new cultivar-specific reference genomes are a valuable 
part of efforts to characterize fruit quality traits using function genomics. 
 
Summary: In the age of plant genomics, there are rapidly expanding opportunities to understand 
important plant traits. Researchers can associate genes with plant traits by scanning for gene activity 
signatures in experiments that highlight important plant traits. These experiments can improve our 
understanding of plant gene function, leading to a deeper understanding of plant traits. For instance, a 
better understanding of pome fruit traits may help us refine and/or develop technology to minimize 
postharvest losses.  

Such experiments can efficiently target genes that are active in a sample. Combined with high 
performance sequencing machines that can generate 100s of millions of measurements, this approach 
can measure the activity of practically all of the ~40,000 apple (or pear genes) in a single experiment. 
However, like putting together a jigsaw puzzle, the researcher needs an accurate reference picture to 
know where to put each piece. This problem becomes enormous when trying to assemble a super high-
resolution picture from a puzzle with hundreds of millions of pieces. Necessarily, researchers use 
cutting edge software on high performance computers to automate the task. This puzzle assembly step 
assumes a near perfect match between the picture and the puzzle pieces. If there are places where the 
puzzle doesn’t match the picture, this can result in incomplete puzzle assembly. Thus, this project 
aimed to understand the impact of the genetic differences between the reference genome data 
from the sequenced cultivars (‘Golden Delicious’ apple and ‘Bartlett’ pear) and the cultivars used 
in our experiments. While the automated puzzle assembly step can be tuned to account for some small 
differences, we hypothesized that differences in specific genomic regions can cause the gene activity 
“picture” to be incomplete – the signal for certain genes would be repressed or lost. Simply, the genes 
that were the most different might be more likely to drop out of the analysis. Because the trait 
differences between cultivars are directly related to the genetic differences between cultivars, this could 
create a critical blind spot for polymorphic genes that help explain the unique fruit quality traits of a 
given cultivar. 

Our results indicate that genetic differences do impact gene activity measurements, and that 
genes with more differences are more likely to be negatively affected. We explored ways to account 
for these differences, ultimately settling on genome sequencing due to rapid advances in the field of 
plant genomics during this project. This approach improved our ability to create a complete gene 
activity “picture,” which now includes more of the highly distinct genes that may explain important 
cultivar trait differences. Our project initially focused narrowly on improving our ability to detect 
versions of genes that were still shared between apple and pear cultivars. With full genomes, we can 
discover additional large scale-genetic differences that can help us understand plant traits. This includes 
the discovery of genes that are unique to one cultivar or another. 

The important investment in cultivar specific genomes allows us to get better gene activity 
measurements (for less money) and provides a foundational resource for functional genomics in pome 
fruit. This project has helped pave the way to obtaining this valuable resource for all the cultivars 
important in the Washington tree fruit market. 
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