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1. OBJECTIVES 
1. Formulate objective pruning rules by integrating pruning strategy desirable for 

robotic/automated harvesting and the strategy currently used by growers in fruiting wall apple 
(e.g. formally trained) and cherry (e.g. UFO) orchards;  

2. Develop a machine vision system to locate pruning branches in those two crop architectures. 
3. Integrate and evaluate a robotic pruning machine. 

 

Originally Proposed Timeline of Project Activities 
 

Objectives# Research Activities 
Time (Calendar Years and Quarters) 

2018 2019 2020 
Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 

 
1 

Develop pruning rules                 

Identify pruning branches                 

2 Acquire canopy images and create 
3D structure of trees                 

3 Evaluate integrated pruning robot         
 

2. SIGNIFICANT FINDINGS 

1. Professional pruners/managers consider formal guidelines when identifying pruning 
branches in dormant apple canopies. In practice, however, the branches pruned by 
professional pruners were inconsistent with stated guidelines and demonstrated 
substantial amounts of variability. 

2. Deep learning techniques are capable of analyzing canopy images to estimate various 
parameters such as size and location of branches. 

3. Our integrated pruning system is capable of reconstructing trees in 3D, identifying 
cutting points, safely navigating to cutting points, and executing pruning. Future efforts 
will focus on making our system more robust in complex orchard environments. 

 
3. METHODS 

3.1 Objective #1: Pruning Rules and Pruning Branch Identification (Carnegie Mellon – Lead; 
WSU - Participant; OSU - Collaborator) 

In the past it was found that, for the tall spindle tree architecture, the pruning process can be captured 
by four basic rules (Karkee et al., 2014); i) remove diseased or dead wood/branches; ii) remove 
branches longer than a specified length; iii) remove branches larger than a specified diameter; and 
iv) remove branches to maintain a specified spacing. Lehnert (2015) proposed eight rules for pruning 
tall spindle apple trees, some of which were similar to four different rules proposed by Karkee and 
Adhikari (2014). It was also claimed that two major rules; i) remove two to four largest limbs, and; ii) 
remove all vertically growing limbs (40 degree or less); will cover more than 90% of pruning job in 
tall spindle apple orchards. These previously developed rules are essential for the automated pruning 
of tall spindle apple orchards.  

However, more work was necessary to develop and apply pruning rules to identify pruning branches 
in other tree architectures including formally trained apple architectures. Engineers, horticulturists 
and growers have been working together to explore pruning methods for the proposed canopy 



architectures. Special consideration was given to the desired limb and fruit distribution for robotic 
apple harvesting that include the need of presenting fruit individually and without any obstruction by 
the branches, trunks, or trellis system.  

Similar to Karkee et al. (2014), the pruning rule formulation process included observation and 
analysis of the work of experienced pruners and supervisors. Experienced pruners were selected from 
commercial orchard crews. They were asked to individually tag pruning branches on randomly 
selected fruit trees using unique color tags. To keep tagging independent between workers, tags were 
removed from the tree before another worker was asked to tag the pruning points on the same tree. 
Video and color images of each tagged tree were captured.  

Pruning branches identified by workers as well as the total number of branches were located and 
counted for each tree. Videos and still images were analyzed to look for the pruning patterns and 
process each worker follows. A set of objective pruning rules are being defined using; i) expert’s 
knowledge captured from engineering team based on their need for robotic harvesting; ii) 
horticulturists and growers based on their understanding of training practices, tree architectures, and 
physiology; and iii) from experienced workers based on pruning processes they follow. We visited 
with different collaborators to get their input on the pruning strategies to support the process of 
pruning rule identification.  

After objective pruning rules are defined, the 3D tree structure created in Objective 2 and pruning 
rules can be used to identify branches for pruning. For this task, novel deep learning-based methods 
were used to distinguish trunk, main branches and sub-branches or laterals of a tree. Geometric 
parameters of tree canopies including branch size (diameter), branch length, and branch spacing can 
be estimated using 3D measurements and corresponding color images. Once all the topological and 
geometric parameters of trunks and branches are estimated, decisions can be made using pruning 
rules to determine which branches need to be pruned. 

3.2. Objective #2: Machine Vision System (WSU and Carnegie Mellon – Co-Lead; OSU - 
Collaborator) 
Under this objective, we focused on creating 3D structures of apple and cherry trees trained in 
modern fruiting wall architecture (e.g. formal training for apples, UFO architecture for cherries). 
Images were acquired using a novel stereovision system developed by Co-PI Silwal. This stereovision 
system features a synchronized camera flash and shutter (called active lighting) to improve point 
cloud generation from stereo image pairs. Six stereo image pairs were collected with each triggering, 
and point clouds from each stereo-pair are fused to create a dense point cloud.  

A complementary vision system (called Coordinated Depth Cameras) has also been developed that 
generates 3D point clouds directly using multiple coordinated time-of-flight cameras. The system is 
mounted on the end of the UR5e robot and can function alone or in tandem with the stereovision 
system. The Coordinated Depth Cameras concept relies on a global camera, a local camera, and a 
position tracking camera. An initial image of the entire tree is taken with the global camera. The 
global camera could be Co-PI Silwal’s stereovision system or a dedicated global time-of-flight or 
stereo camera. This initial image serves as a framework of points for the local camera. The UR5e then 
begins to “scan” the tree at close range with the local camera along a planned trajectory. The local 
camera generates a series of high-resolution point clouds that are mapped to the global point cloud as 
the tree is scanned. This mapping of local points to the global framework is made possible through 
the tracking camera. The tracking camera continuously estimates the relative position of the local 
camera to the global camera. Finally, the iterative closest point algorithm is used to complete the 
mapping of local points to the global framework. Once the scanning is complete, we are left with a 
very detailed 3D point cloud of the tree structure that can be analyzed to make autonomous pruning 
decisions. 



After image acquisition and 3D point cloud generation, a state-of-the-art object detection algorithm 
(Faster R-CNN) proposed by Ren S., et al. (2015) was used to identity branching points from color 
images. These branching points are strong visual ques that detect branch occlusion necessary to 
segregate individual branches. The link between the detected branching points was associated using 
the skeleton image generated by the Generative Adversarial Network (GAN). The output of the GAN 
is a binary image with an array of connected binary pixels that traced the mid-section of branches in 
the color images. A multi-channel GAN was used to generate a skeleton image for branches and main 
trunk. Once the skeleton was identified, the curvature of the branches and trunk was warped using the 
depth information obtained in the previous steps to reconstruct the 3D models. Using this info, the 
length and size (diameter) of each branch can be estimated. Length can be estimated using the starting 
and end points of the branches. To estimate diameter, the skeleton of the tree can be overlaid on top 
of the color images taken from the same perspective. Then, the number of pixels in the orthogonal 
direction of the branch skeleton can be counted at the base of the branch (2 to 5 cm from the branch-
trunk junction). The resulting 3D skeleton and geometric parameters can be used in identifying 
pruning branches as discussed in Objective 1. 

A complementary machine learning approach has also been developed that generates a 3D tree 
skeleton directly from point cloud data (as compared to first using images). A point cloud from Co-PI 
Silwal’s stereovision system or the Coordinated Depth Cameras system is processed to create a graph 
of “superpoints” and “edges.” Each edge in the graph is processed by a neural network to determine 
its validity. Valid edges are used to determine the tips and trunk of the tree. The tips and trunk of the 
tree are input into an evolutionary algorithm that “grows” the tree structure between the trunk and the 
tips. The output of the evolutionary 
algorithm is a tree skeleton with trunk, 
support, and leader labels. Secondary 
branches can be identified using the leader 
labels. This tree skeleton can then be used 
for autonomous cutting point selection. 
 
3.3. Objective #3: Integrated Robotic 
System Evaluation (WSU–Lead; CMU 
Participant; OSU Collaborator) 
In the proposed work, two pruning shear 
end-effectors were developed and 
integrated with a robotic manipulator to 
carry out pruning tasks. The machine 
vision system was integrated with the 
hardware system for complete system 
evaluation in the lab and field 
environments. 

A UR-5e robot arm from Universal Robots 
was used for developing an automated 
fruit tree pruning system. This manipulator 
demonstrated good speed, reach and 
maneuverability, and was acquired at both 
Collaborator Davidson’s and PI Karkee’s 
labs in addition to the similar system 
available at CMU. This facilitated 
collaborative system development, 
integration, and evaluation. Developing an 

Fig. 1. Simulation of branch pruning in Gazebo. A 3D 
OctoMap of an apple tree has been created from a 3D point 

cloud. Five cutting points were selected randomly. The UR-5e 
traces a collision free path. 

Fig. 2. To complete the final approach to a cutting point, the 
UR-5e uses a hybrid image/force controller instead of 3D point 

cloud data. 

 



integrated software stack for robot control is key for a 
successful pruning system. Our approach included the 
following:  
 
1) Create a 3D point cloud of the orchard environment 
2) Generate collision free paths to the identified cutting 

points using FREDS-MP (Fig. 1) 
3) Execute a controlled approach to the cutting point 

using inverse kinematics 
4) Cut the identified branch 

The planning framework we utilize is called FREDS-
MP, which aims to increase the planning speed and 
overall throughput of the robotic system. FREDS-MP 
works by precomputing a database of optimistic 
trajectories offline, utilizing these trajectories during the 
online phase as effective priors, and ordering the cutting 
points more effectively. Additional controls have been 
developed to increase the accuracy of the UR-5e’s 
approach to the cutting point while minimizing risk to 
the robot and the environment. Oftentimes, the 3D point 
cloud of the tree is not a perfect reconstruction due to a 
variety of environmental or technical factors. These 
inaccuracies could cause unintended collisions during 
the UR-5e’s approach that cause damage to the tree, the 
UR-5e, or both. As such, a hybrid controller has been 
developed to increase the accuracy of the UR-5e’s final 
approach (15-30 cm) to cutting points using images and 
force data instead of 3D point cloud data (Fig. 2). 
Segmented images of pruning branches and the end 
effector were generated using another GAN to enable 
robust vision-based control. The vision-based controller 
navigates the end effector to the pruning branch until 
contact is made. Once contact is made, a force-feedback 
controller was developed using the UR-5e’s force torque 
sensors to navigate the end effector to the pivot point in 
the shears without creating high forces. This hybrid 
controller was trained in simulation using proximal 
policy optimization. 

 

4. RESULTS & DISCUSSION 
4.1 Objective #1: Pruning Rules and Pruning Branch 
Identification 
Our hypothesis for automated pruning rule generation was that the observation of commercial pruning 
operation and analysis of images/3D models captured before and after pruning could lead to objective 
pruning rules. To test this theory, we assigned professional pruners to follow commercially adopted 
pruning rules and prune forty dormant apple trees. For these canopies, the camera system was placed 
in a stationary location approximately one meter in front of the canopy and we collected before and 
after pruning wide angled stereo images. Later, point clouds from the two pre/post pruning datasets 
were overlaid to identify individual cutting points. Figure 3 shows this underlying concept. 

A 

B 

C 

Fig. 3. Pre/post pruned point cloud overlay. 
(A) pre pruned point cloud. (B) post pruned 

point cloud. (C) overlaid point cloud. The 
intersections of green and orange points 

indicate cutting points. 



A summary of the critical components of the ideal pruning rule for dormant apple trees are listed 
below for discussion. A detailed description of the pruning rule practiced by professional pruners is 
included in our 2018 annual report (submitted on Jan 16, 2019). 
• Use of a BCA tool to optimally determine the appropriate number of fruiting location per unit 

length of the lateral branches. 
• Fruit spacing was considered an important parameter. Minimum fruiting zone spacing was 

approximately 4 inches as anything closer might lead to clusters of fruit during harvest season.  
• Length of fruiting laterals was another important factor. Laterals longer than 8 inches were 

trimmed. 
• Considerations were also made to remove vertical fruiting sites and those right over or under the 

horizontal branches. 
• Selectively remove smaller buds from a cluster. Remove buds too close to the trellis wire, shoots 

under the branches, and vertical fruiting zones. 
• Remove dead and diseased branches and tie shoots closer to the edge of the branch to fill gaps if 

lateral branches are short. 

The analysis of the pre/post pruning data 
revealed inconsistency in following the strict 
guidelines for pruning apple canopies. In 
practice, branch diameters were assessed 
visually and intuitively without the use of the 
BCA tool. This led to suboptimal selection of 
number of fruiting location per unit length of 
the lateral branches. Additionally, the 
minimum gap between fruiting locations 
were estimated using the width of the palm 
as a unit of measurement which varied from 
one pruner to another. These differences 
between the ideal and practiced manual 
pruning created large amounts of variation in 
the data for training a machine learning 
agent. As such, these revelations led us to 
focus on synthesizing a pruning rule by just 
utilizing the geometric measurements and 
topological parameters. We realized the most 
important aspect of pruning is the uniform 
distribution of fruit, therefore we implemented 
the following simplified pruning rule that 
prioritizes fruit distribution. 
1. Estimate diameter and length of lateral 

branches and use the BCA equation to 
determine optimal number of fruiting 
locations per unit length of the lateral 
branches. 

2. Count and measure the length of secondary 
branches and only keep secondary 
branches with minimum of 4 inches gap.  

In UFO cherries, pruning rule was highly 
simplified (based on the experts knowledge) 
to ‘remove all lateral branches on upright 

Fig. 4. A multi-view stereo camera system imaging dormant 
apple canopies. Camera system includes a linear slide. 

 

Fig. 5. A 3D point cloud of the tree structure generated by 
the Coordinated Depth Cameras system. 



fruiting offshoots’. 
4.2 Objective #2: Machine Vision System  
Secondary branches protruding towards and directly away from the camera are missing in the 3D tree 
structure when only one viewpoint is used. To mitigate this limitation, Co-PI Silwal from CMU 
designed a new camera system that images the canopy with two stereo cameras systems (Fig 4). 
The new camera system has two stereo pairs, one at a lower height for front view of the canopy and 
another at a higher and angled position for the top view. Both the top and bottom cameras travel along 
the linear slide to three different locations and provide a total of six different views of the canopy. 
The fused point clouds from six different locations provided a more detailed 3D structure of the 
canopy. In addition to multi-view stereo, like its predecessor, this new camera system is also 
equipped with active lighting that generates consistent image quality regardless of ambient lighting 
condition. Additionally, our Coordinated Depth Cameras system can operate alone or further improve 
the quality of the point clouds obtained by Co-PI Silwal’s stereovision system. A sample point cloud 
obtained by the Coordinated Depth Cameras can be observed in Figure 5.  
 
To implement any pruning rule, the vision 
system should be able to estimate key aspects of 
tree canopies such as branch and trunk shapes 
and sizes. Currently, we have implemented a 
variation of a deep learning technique called 
Generative Adversarial Network (GANs) that 
directly outputs a 2D skeleton image of just the 
secondary branches. This is advantageous over 
conventional computer vision algorithm as it 
bypasses several intermediate processing steps 
such as pre-processing, multi-class segmentation, 
and post-processing steps that could potentially 
add more inaccuracies.  

Our complementary skeletonization algorithm 
has demonstrated the ability to label point clouds 
directly and generate a 3D tree structure 
identifying tree trunk, supports, leaders, and 
secondary branches. The output of this algorithm 
can be observed in Figure 6. This tree skeleton 
can then be used to autonomously determine 
cutting points for pruning. Further work is 
going on to estimate desired geometric and 
other parameters of trees. 

4.3 Objective #3: Integrated Robotic System 
Evaluation  
In 2019, we developed an integrated pruning 
system and evaluated its planning and 
execution performance in a lab environment. 
The pruning system is shown in Figure 7, 
consisting of the UR-5e equipped with an end-
effector and an in-hand Intel RealSense D435 
camera. The end effector consisted of a 
pneumatically actuated four-bar linkage with 
custom-ground blades. Initial tests showed the 

Fig. 6. Labeled tree skeleton output from the 
skeletonization algorithm. 

Fig. 7. Our initial pruning robot setup, consisting of a UR-
5e robot arm, an Intel RealSense D435 camera, and a 

custom pneumatic pruning end effector. 



end-effector could consistently cut branches up to 10mm in diameter near the pivot point of the 
blades. Cutting points could be manually selected on a 3D point cloud, and the UR5 could 
successfully navigate the end effector to manually selected cutting points. 

In 2020, our pruning robot was further optimized. A battery-powered, electrically actuated pruning 
end effector was modified to interface with the UR-5e and support remote actuation. This new 
pruning end-effector is capable of pruning branches up to 25mm and has no need for compressed air. 
The UR-5e was mounted on the linear slide with Co-PI Silwal’s stereovision system to add an 
additional degree of freedom for FREDS-MP. Additionally, the Coordinated Depth Cameras system 
was mounted on the end of the UR-5e with the improved end effector. The refined prototype was 
further evaluated in labs using actual trees collected from commercial orchards. 
 
In 2021, we integrated all the components of 
an autonomous pruning robot (Fig 8). The 
Coordinated Depth Cameras system was 
capable of creating detailed 3D point clouds, 
and our machine learning skeletonization 
algorithm was capable of autonomously 
selecting cutting points. FREDS-MP was 
capable of navigating our pruning end 
effector to the autonomously selected cutting 
point, and our end-effector was capable of 
autonomous actuation to cut the pruning 
branch. The system was brought to field 
evaluation in a commercial UFO cherry 
orchard. However, only limited test cuts were 
performed because of new challenges faced 
in the complex orchard environment and 
practical issues on robot operation caused 
severely cold weather. We outlined the steps 
we needed to take to have a successful 
demonstration and have been working 
towards these goals. Our Coordinated Depth 
Camera has been optimized since the 
attempted demonstration, and our vision-
based controller GAN is being further trained 
for robustness in complex orchard environments. We have identified a more efficient mounting 
orientation for the UR-5e, and we are optimistic our next demonstration will be a success. We will 
continue to evaluate the system through additional funding provided by USDA to our team. 
 
  

Fig. 8. The final pruning robot used for our 2021 
evaluation, consisting of the UR-5e robot arm, the 

stereovision system, the Coordinated Depth Cameras 
system, and a custom electric pruning end effector. 



EXECUTIVE SUMMARY 
 
Project Title: Towards automated canopy and crop-load management in tree fruit 
 
Key words: Pruning robot, automated pruning, deep learning, machine vision, robotics 
 
Abstract: The widespread adoption of robotic harvesting systems requires deliberate canopy 
management to grow fruit in easily accessible locations. Therefore, it is necessary to automate canopy 
management in tree fruit so that labor use can be minimized throughout the entire production process. 
Specifically, this project focused on the automated pruning of fruit trees. The objectives of this 
project were to: i) Formulate objective pruning rules by integrating pruning strategy desirable for 
robotic/automated harvesting and the strategy currently used by growers in fruiting wall apple (e.g. 
formally trained) and cherry (e.g. UFO) orchards; ii) Develop a machine vision system to locate 
pruning branches in those two crop architectures; and iii) Integrate and evaluate a robotic pruning 
machine. To develop objective pruning rules, 3D point clouds were collected of 40 dormant apple 
trees before and after pruning by professional pruners. We found that, although professional pruners 
consider formal guidelines, in practice the branches pruned were inconsistent with the stated 
guidelines and demonstrated substantial amounts of variability between pruners. As such, we adopted 
two simple rules that prioritize the uniform distribution of fruit. Two complementary machine vision 
systems were developed to capture 3D tree structure. An active lighting stereovision system was 
developed consisting of two stereo pairs that utilized a linear slide. The stereo pairs would take 
images from three positions along the linear slide to provide a total of six perspectives of the tree to 
minimize branch occlusion in the resulting 3D point clouds. Additionally, we developed a 
Coordinated Depth Cameras system that directly generates 3D point clouds without taking images 
using multiple time-of-flight cameras. The Coordinated Depth Cameras system could be used alone 
or in tandem with the stereovision system. These machine vision systems produced highly detailed 
3D point clouds that were used to make autonomous pruning decisions. Again, two complementary 
approaches were developed to autonomously identify cutting points. One approach utilized a deep 
learning technique called a Generalized Adversarial Network to output 2D skeleton images of 
secondary branches that could subsequently be used to measure branch length and diameter. A 
complementary approach utilized an evolutionary machine learning algorithm to operate directly on 
3D point clouds instead of images. The evolutionary algorithm produced a 3D tree skeleton with 
labels for the tree trunk, support, leaders, and secondary branches. The information from these tree 
skeletons could be used to autonomously identify pruning branches and cutting points. A motion 
planning algorithm called FREDS-MP was used to navigate our UR-5e robotic manipulator and our 
custom pruning end-effector to the desired cutting point. A hybrid vision-based/force-feedback 
controller was developed to increase the accuracy of the final approach to cutting points without 
causing damage to the robot or the environment. The pruning branch could then be automatically cut 
by our pruning end-effector. In 2021 winter, a fully integrated pruning robot was evaluated at a 
limited scale in the field, but the orchard environment posed new challenges that our team is currently 
addressing. An improved and more robust robotic system will be evaluated in the orchard 
environment in recent future using additional funding our team (led by collaborator Joseph Davidson) 
have secured from USDA. 
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