
NEW PROJECT PROPOSAL  PROPOSED DURATION:  1 Year 
 
Project Title:  Smart Orchards Year 2 + Optional Connectivity  
 
PI:   Steve Mantle    Co-PI:  Lav Khot   
Organization: innov8.ag    Organization:  WSU    
Telephone: 509-473-0252    Telephone: 509-786-9302 
Email:   steve@innovate.ag    Email: lav.khot@wsu.edu  
Address: 30 W Main St Ste 202   Address: WSU IAREC, 24106 N Bunn Rd. 
Address 2:      Address 2:     
City/State/Zip: Walla Walla WA 99362   City/State/Zip: Prosser, WA 99350 
   
 
Cooperators: Dave Brown [AWN], Bernardita Sallato, Lee Kalcsits, Claudio Stockle   
 
Percentage time per crop:  Apple: 100% Pear:  Cherry:  Stone Fruit: 

(Whole % only) 
 
Total Project Request:      Year 1: $60,000 + $30,000 optional for connectivity  Year 2: 
  Year 3:  
 
Other funding sources:   Requested 
Amount: $1,000,000     
Agency Name: USDA-NIFA   
 
Other funding sources: Requested 
Amount: estimated value $60,000 
Agency Name: In-kind donation or discount by sensor/equipment providers – 
Tuctronics/AgriNET, Davis Instruments, Teralytic, Green Atlas, Smart Guided Systems, PocketiNet 
Communications, WSU AgWeatherNet, Microsoft 
 
Notes: innov8.ag will work with WTFRC and the above sensor providers (as well as additional to-be-
identified providers) to solicit donations, loaners, or discounts for the 2021 growing season. As of 
time of proposal submission, Davis Instruments has committed to continuing to fund one location, 
and WSU AgWeatherNet will continue to fund the existing smart orchard location & the second 
location as part of their WTFRC-funded grant.  The additional providers have indicated intent to 
heavily discount or donate to this project in order to accomplish stated objectives. 
 

WTFRC Budget: none 
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Budget 1  
Organization Name:  Innov8 Ag Solutions Contract Administrator:  Steve Mantle 
Telephone: 509-795-1395   Email address:   steve@innovate.ag 
Supervisor or Station Manager name and email address (if applicable):   
 

Item 2021 2021 (optional 
connectivity 

add-on) 

2022 

Salaries    
Benefits    
Wages    
Benefits    
Equipment 3,000 10,000  
Supplies    
Travel    
Miscellaneous “as a service” 27,000 20,000  
Plot Fees    
Total 30,000 30,000 0 

Reasons for Extension:  We would appreciate no-cost extension to this project until 9/30/22.  The extension will help us: 1) 
complete data collection from 2021, some of which wasn’t uploaded by sensor providers and/or API wasn’t provided as 
agreed; two examples are dendrometers & Dynamax sensors.  2) Analyze & interrelate data sets, including collected drone 
imagery.  We’ll gladly deliver a progress report in 2021 to show progress, challenges, and early insights; followed by 
multiple published papers that are in the pipeline for early-mid 2022.  With a 2022 new proposal, our 2021 learnings will 
inform a highly-focused 2022 – with an emphasis on application of insights to irrigation & nutrition considerations, 
particularly at the Grandview smart orchard. 
 
Budget 2  
Organization Name: WSU-CAHNRS Contract Administrator: Katy Roberts  
Telephone: 509-335-2885  Email address: arcgrants@wsu.edu 
Supervisor or Station Manager name and email address (if applicable):  Samantha Bridger, Grant 
Coordinator, prosser.grants@wsu.edu  
 

Item 2021 2022 

Salaries   
Benefits   
Wages $23,776  
Benefits $2,378  
Equipment   
Supplies $2,000  
Travel $1,520  
Plot Fees   
Miscellaneous    
Total $29,674  $0 

Footnotes: Wages of $23,776 plus $2,378 benefits will partially support two graduate students during field season ($29.72/h 
x 20/week x 32 h [GRA-1] and x 16 h [GRA-2]) who will work closely with the PI-Khot in field data collection, data 
analysis and reporting. Supplies include replacement drone spare parts (Propellers, Batteries, Landing gears, etc.; $1,200) 
and subscription to a Pix4D software ($750) used for geospatial data analysis. Travel ($1,520) includes smart orchard data 
collection trips (110 miles/trip x 10 trip x 0.58/mile x 2 vehicles x 2 sites) and field day travel for the crew ($128).   
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Justification 
Availability of real-time orchard site information, specifically local weather conditions, soil water and 
nutrient status, and canopy vigor/tree health, will permit growers to precisely execute timely 
management decisions and avoid crop losses, thereby enhancing the competitiveness of the 
Washington’s fruit crops. Currently, growers cannot benefit from available or emerging technologies 
due to a disconnect between our ability to i) conduct reliable sensing and streamlined data transfer 
through a common interface, ii) computing of big-datasets, i.e. high resolution spatiotemporal aerial & 
in-canopy imagery and 2D Light Detection and Ranging (LiDAR) point-cloud data, and iii) reliably 
transfer data products to end-user(s) for immediately actionable insights. This proposal addresses the 
above gaps by continuing the ‘Smart Orchard’ project at Chiawana Orchards, as well as selecting a 
second site with a more varied topography. Overall, we expect to have two established Smart Orchard 
test blocks for research and stakeholder education. 
 
Washington apple industry buy-in of approach is anticipated, as we break down existing data siloes. 
Through data analytics of collected data, we expect: 1) identification of data products (indicators) that 
better reflect vigor status in the orchard block and decision aid for water and nutrient management, and 
2) increased level of knowledge of data driven technology for practical management execution. The 
tree fruit industry will benefit from long-term impacts realized by the reduction of use of resources, 
while improving their production and pack-outs. 
 
Objectives 
1. Maintaining an array of connected in-field sensors as well as through-season high resolution aerial 

multispectral and thermal imagery collection & analysis.  
2. Maintaining a data warehouse and provide access to raw data and layered data products to end user 

via a web and/or app interface.  
3. Organize ‘field days’ for growers, researchers, & other interested parties to learn more about data 

and how it’s usage toward in orchard decisioning. 
4. [Optional] Implement a high-speed wireless network w/ edge computing for one smart orchard 

location, to highlight technical & economic viability of addressing orchard connectivity challenges. 
 
 
Methods 
 
Objective 1. Maintaining an array of connected infield sensors as well as through-season high 
resolution aerial multispectral and thermal imagery collection & analysis. 
 
With the fundamentals in 
place, we will gather data 
(Fig. 1) from sensor, 
imagery, management, & 
resource providers to 
represent the entire 
spectrum of data that 
growers informally consider 
in their day- 
to-day decisions.  
 
Table 1 lists our targeted 
sensor categories, types, and 
specification. Associated 
manufacturers have provided support for this project; whereas some sensors (& platforms) are available 

Fig. 1. Smart orchard site implemented in 2020. 



with WSU researchers. Our on-going pilot project has been using these sensors since April-2020, being 
powered by DC power packs and solar panels recharging the battery packs. For sensors that haven’t 
integrated to the ‘Azure Farmbeats’ platform, as well as management & resource-based (chemical, 
labor) systems, we will work with the participating grower(s) to ingest data from their enterprise 
reporting systems (e.g. Famous Software) to a SQL database that will reside in a neighboring resource 
group within Azure.  Similarly, some imagery data (satellite imagery from Sentinel, aerial imagery 
from UAS platforms) will be ingested through Farmbeats. For non-Farmbeats-compatible sources, we 
will utilize a similar ingest and storage methodology to Farmbeats and will store the reference data in 
the above-referenced SQL database. 
 
Table 1. Details on sensors with key specifications & data products realized from smart orchard  
project¥.   

Category Purpose/ location Instrument Manufacturer Specifications* Data products 

Weather 
 
  

Open-field & In-orchard ATMOS 41 Meter Group 12 weather parameters Orchard specific 
Weather/climate 

variability, Growing 
Degree Days; 

Cold/Heat stress indictors 

Above canopy, in-canopy at 
3’ and 6’ AGL Vantage Pro2 6820 Davis 

instruments 5 weather parameters, A: 2% 

In-canopy at 3’ AGL ANTHA Tuctronics Temperature, humidity and leaf 
wetness 

Soil, Water 
 
 
 

Soil moisture at 2’ depth Drill & Drop Sentek Measurements every 4” 

Soil health; 
Temporal layers of soil 
nutrient status, moisture 
availability & water use 

Soil moisture, nutrients and 
temperature at 4’ AquaSpy probe AquaSpy Measurements every 4” 

Soil water potential Teros 21 Meter Group R: 0.1 kPa, A: 90% 
Soil quality at 6”, 18”, and 
36” depths  Soil probe Teralytic NPK, moisture, salinity, aeration, 

respiration, temp., light & RH  

Irrigation monitoring PS-1 irrigation 
pressure switch Meter Group Set point: 5 psi (± 1) 

 Tree trunk and fruit size Dendrometer Phytech Shrink-swell in µm  

Tree/Canopy 

Sap flow measurement Dynagage Sap flow 
sensor 

Dynamax; 
Oregon State 
University 

A: 90% 

Spatial and temporal 
maps: 

 
Tree growth 

Canopy vigor variation 
Canopy health/stress 

Crop water use 
Crop density 

 

Leaf wetness LWS Campbell 
Scientific 

Measurement time: 10 ms, Output: 
250–1500 mV 

Canopy health (NDVI, PRI) Spectral 
Reflectance Sensor Meter Group 

A: > 90%; Green-1: 532 nm, 
Green-2: 570 nm, Red: 650 nm; 
NIR:  810 nm 

Canopy health (NDRE) Custom 
development  

PI Brown & 
Khot   Bands: NIR and RE  

Canopy vigor 2D LiDAR Smart Guided 
Systems LLC AR: 0.25⁰, Scan frequency: 25 Hz 

RGB imaging RGB imager w/ DJI Phantom 4 (in 
WSU inventory) 

PR: 12.4 Mega Pixels, SR: 5 cm @ 
100 m altitude 

Multispectral imaging for 
canopy vigor/health 

10-band dual 
camera imaging 
system 

Micasense Inc.  

SR: 7 cm @ 100 m altitude  
Bands: Coastal blue (444 nm), blue 
(475 nm), green-1 (531 nm), green-
2 (560 nm), red-1 (650 nm), red 
(668), red edge-1 (705), red edge-2 
(717 nm), red edge-3 (740 nm) & 
NIR (842 nm) 

Thermal imaging for canopy 
temperature and health 

FLIR Duo Pro R w/AgBOT 
quadcopter (in WSU inventory) 

A: 95%, lens size: 13 mm, 
Spectrum: 7500–13500 nm, SR: 13 
cm @ 100 m altitude  

*AR: Angular resolution, SR: Spatial resolution, A: Accuracy, PR: Pixel resolution; ¥ Ground truthing data details in 
objective 2 methods; Vegetation indices: NDVI- Normalized Difference Vegetation Index; NDRE-Normalized Difference 
Red Edge Index; PRI- Photochemical Reflectance Index. 

Finally, our architectural approach will optimize for different personas and associated entities, 
while optimizing for the grower to have control of with whom their data is shared, what part of their 
data is shared, and what level of the data may be de-identified [while still holding some value] for 
certain personas. This is critical, in that according to the Sustainability Consortium (Rhode, 2020), 
grower trust concerns are an inhibitor to data collection and growers resent unequal financial gain from 
data sharing by downstream organizations, while also harboring concerns about government and private 



companies misusing their farm-level data. Thus, we will be sensitive to understand, document and 
integrate grower concerns and their needs to architect an approach that has potential to be adopted 
across the industry. 

Expected outcome: We expect to have two established ‘Smart Orchard’ test blocks for research and 
stakeholder education. Washington apple industry buy-in of approach is anticipated, as we break down 
existing data siloes.     

 
Objective 2. Maintaining a data warehouse and provide access to raw data and layered data products 
to end user via a web and/or app interface.  

 
Task 2.1 Data warehouse. We 
will use Microsoft Azure 
Farmbeats hardware and 
software layers as core (Fig. 2), 
as their agricultural-centric 
datahub approach minimizes 
API integration with sensor & 
imagery providers, as the 
partners such as Davis 
Instruments, Teralytic, and DJI 
have already standardized their 
APIs to flow data into the 
datahub instance that will be 
operated by Innov8Ag. 
 
Task 2.2. Data products. Table 
1 lists the key data products that 
will be derived for the data 
collected at each of the two 
sites. Those include, i) orchard 
specific weather/climate variability, Growing Degree Days; Cold/Heat stress indicator; ii) Soil health: 
temporal layers of soil nutrient status, moisture availability & water use, iii) Spatial and temporal maps: 
Tree growth, Canopy vigor variation, Canopy health/stress, and Crop water use, and iv) Crop density 
maps. Pertinent to crop density 
maps, we intend to utilize high 
resolution ATV-based imagery to 
quantify variability in crop 
distribution – at the very least at 
one point in the growing season; 
ideally at multiple points 
throughout the growing season 
(e.g. blossom to applets to apples) 
for yield prediction. 
 
Pertinent to spatial maps, we will 
utilize high resolution aerial 
imagery to extract canopy/soil 
temperature, crop vigor/stress maps [Green Normalized Difference Vegetation Index (GNDVI), 
Normalized Difference Red Edge Index (NDRE), Crop Water Stress Index (CWSI)] and crop 
evapotranspiration (ET) maps (Fig. 3). PI Khot’s lab has streamlined data quality check and analysis 

IoT Edge node

Device Management

Data Visualization

ML/AI Models

Orchard Management

In-field sensors Bigdata payloads

Satellite, Weather data

Fig. 2. Microsoft ‘Azure Farmbeats’ platform architecture utilization. 

Fig. 3. High resolution evapotranspiration map of 
smart orchard test-block (season 2020). 



protocols to extract above imagery products (Zúñiga et al., 2017; Chakraborty et al., 2019; Ranjan et 
al., 2019). Pertinent to high resolution crop ET maps, our team (Chandel et al., 2019; 2020) has 
successfully modified METRIC (Mapping Evapotranspiration at high Resolution with Internalized 
Calibration, Allen et al., 2007) model to obtain daily ET estimates at 10 cm/pixel resolution from small 
UAS imagery data for spearmint, potato, alfalfa and grapevine crops. On this project, we will continue 
to transfer and validate this and related energy balance models to apple crop ET estimation. Inputs from 
Dr. Claudio Stockle, who is a Crop System Modeler and collaborator on this project, will be critical in 
this process.  

Expected outcome:  We expect: 1) Identification of indicators that better reflect vigor status in the block 
and guidelines for water and nutrient management, 2) Industry members will increase their level of 
knowledge of data driven technology for practical management execution, 3) Growers will learn about 
specific technology and management recommendations to manage tree vigor, water and/or nutrients 
and 4) the tree fruit industry will benefit from long-term impacts realized by the reduction of use of 
resources,  while improving their production and pack-outs.    

Objective 3. Organize ‘field days’ for growers, researchers, & other interested parties to learn more 
about data and how it’s being used toward in orchard decisioning. 

A 2018 survey developed by Sallato’s program has identified that the growers prefer live interaction 
and hands-on activities during the extension events. This is the most impactful outreach/education 
method that leads to change in actions and technology adoption. Thus, our extension education efforts 
will focus on  organizing 3 field days per year to share outputs of the project, with the participation of 
growers, researchers, consultants, and other industry stakeholders.  

We will incorporate the outcomes and features of this project through recurring field days, similar 
to 2020 season. Field days will also be recorded and shared through several tree fruit extension avenues: 
the Fruit Matters monthly newsletter, Facebook, and mailing list with more than 2,900 subscribers. In 
addition, the team will participate in industry events such as the Washington State Tree Fruit 
Association Annual Meeting. Frequent newsletters will outline progress toward project objectives and 
provide information on relevant technology related topics. We will contribute to trade magazines (e.g. 
Good Fruit Grower, Fruit Grower News, etc.) on data-driven technology for tree fruit management.  
 

Objective 4.  Implement a high-speed wireless network w/ edge computing for one smart orchard 
location, to highlight technical & economic viability of addressing orchard connectivity challenges.  

A fundamental challenge with imagery & LiDAR point-cloud data is that the data size is 
substantial. For UAS & ATV-based imaging operators, after flying or driving for the day they take the 
imagery collected on SD cards, return home, and copy 24+ GB of raw data for UAS, or 1TB+ of raw 
data for ATV (for 20-acre orchard block) to a local drive on a laptop and/or cloud service for processing. 
While the intelligent orchard sprayer captures raw LiDAR data to determine the height/width/volume 
of each tree, the raw LiDAR data itself is ‘thrown away’ within 4 hours of capture, as the quantity of 
the data throughout a day of spraying easily reaches Terabytes (TB). It is too much to cache it onto a 
SD card without distracting the operator from their core role of sprayer operations.   

For these scenarios, data transfer is inefficient and problematic, as the transfer from capturing 
device to processing device involves friction from human process as well as transfer speed limitations. 
For 1 TB of data, for instance, at 25 Mbps upload speed, an upload for cloud processing could easily 
take 3 days – assuming the upload is not interrupted. Therefore, we propose to implement an  
• Edge computing device (Fig. 2) for onsite data processing, such as UAS image stitching, LiDAR 

data analysis to construct a virtual tree canopy, and ideally fusion of UAS imagery (above canopy) 
with LiDAR (in-canopy) for a detailed rendering of each orchard row for objective 2; 



• High-speed connectivity component (3GPP-based Private Long-Term Evolution (LTE) / Citizens 
Band Radio Service (CBRS) or WiFi-6 / 802.11ax) for data transfer;  

• High-speed (100Mbps to 1 Gbps) uplink to cloud services, enabling public cloud efficiencies 
for imagery analysis via Machine Learning. 

Through Innov8Ag’s partnership with Microsoft and PocketiNet Communications, we will design, 
implement and optimize the above approach. Step 1 will require Radio Frequency (RF) planning, 
equipment implementation, and tuning, which we anticipate to be particularly challenging, given that 
the high density planting style of apple trees and the accompanying, supporting trellis system, causes 
havoc for RF propagation & interference.  It will therefore be important to trial options from beginning 
to end of the growing season, at various stages of vegetation density. Private LTE and CBRS have great 
potential, as the FCC is making spectrum available for public use as well as carrier use (through a 3.5 
GHz spectrum auction in Summer 2020), which is already driving mobile phone manufacturers to 
support the spectrum (also known as “Band 48”).  It’s anticipated that growers and/or local service 
providers would operate a private network that could provide connectivity to both mobile phones, IoT 
devices, & equipment such as UAS, tractors, & sprayers, as an alternative to [often] non-existent or 
marginal mobile coverage by traditional phone operators such as Verizon, AT&T, and T-Mobile. Once 
the RF planning is complete, we will implement radios and assess transfer speeds, and optimize 
accordingly. The Private LTE/CBRS option has different approaches for fixed (non-moving) devices 
vs mobile (moving) devices, potentially introducing operational and regulatory barriers, which may 
limit scenarios as to how we can collect the data (e.g. sprayer & UAS can only connect and upload data 
when they return to “home base”, vs in real-time while they’re still deployed in the field). As an 
alternative, we will evaluate WiFi-6/802.11ax, which may provide more flexibility and less complexity, 
as our goal is to model an architecture that will be repeatable across other orchards and various perennial 
cropping systems in the future.   

Step 2 will comprise Innov8 Ag working with Microsoft to obtain, implement, and configure a 
“Azure Stack Edge” device, which enables the large raw dataset to be transferred close to the source of 
data capture, while also taking advantage of local Graphics Processing Unit (GPU) capabilities to 
process the data & run ML models on raw data, then just uploading the processed data (or simply upload 
ML models) via the link established in step 3. Step 3 will comprise Innov8 Ag working with PocketiNet 
and the Public Utilities Department to connect via fiber and/or microwave to the Internet. 

 
  



Timeline. 
Activity/Year 
  

2021-22 
Q1 Q2  Q3  Q4 

Objective 1 * *   
Objective 2 * * *  
Objective 3  * * * 
Objective 4 * * *  
Reports and Publications   * * 

 
Literature Review 

Crop losses in tree fruit production: To promote agriculture sustainability and address agricultural 
challenges for tree fruit production, growers need to implement innovative management practices to 
deliver quality produce in a highly competitive industry, while reducing their production costs to 
maintain profitability. Climate change, environmental and human safety awareness demand precise and 
efficient management. In eastern WA, the largest tree fruit-producing region in the country, growers 
seek to adapt to these challenges through the use of data and sensor technology and automation to 
ensure an economically sustainable industry. 

Labor costs have been indicated as the most important challenge for economic viability, thus all 
efforts in new technology needs to aim at reducing labor costs. The most labor-intensive activities 
include harvesting, pruning, thinning and training. The last three tasks are fundamental for fruit quality 
and productivity. Tree vigor, which can be managed via water and nutrients, has a direct impact on 
pruning efficiency/need, thinning and tree training. Tree vigor also affects tree’s susceptibility to biotic 
and abiotic stressors, sprays needs, and fruit quality. Given the inherent variability in apple and other 
tree fruit crop growing conditions, vigor variability within the orchard block reduces management 
efficiencies, and affects pruning needs, monitoring, spray coverage, precise nutrient management, 
among others. Thus, prospects of developing innovative technology and data analyses could help 
growers to identify vigor differences, at a block level, and reduce tree to tree variability through, for 
example, variable water and nutrients management.   

Improving pack-outs (number of boxes of fruit packed for fresh market delivery) by reducing fruit 
defects will improve grower profitability and efficiency. Sunburn in apples, caused by excess heat and 
sunlight, accounts for 30% of losses (Prengaman, 2017). Sunburn damage occurs annually in many US 
and global growing regions and causes multiple problems – structural and morphological changes, 
alterations in pigment composition, inhibition of adaptive mechanisms, and impairment of 
photosynthesis (Racsko and Schrader, 2012). Existing technologies for sunburn protection involve the 
use of overhead sprinkler irrigation to change the orchard micro-climate, sun-protectant sprays and 
shade nets, either alone or in combination. However, there are negative effects associated to overhead 
cooling, such as over watering and its influence on vigor and fruit quality, increased human and food 
safety risks depending on the water quality, and unknown effects on nutrient balance, while the use of 
netting can be expensive. Adequate prediction of sunburn risk conditions, targeting plant/fruit 
monitoring, can reduce the use of water and its negative side effects. Tree vigor, water, nutrient 
management and access to site-specific weather data would thus help reduce losses due to sunburn.  

Another mayor loss in high value apples is due to calcium (Ca) related disorders such as bitter pit. 
According to Rosenberg et al. (2004), bitter pit can account for up to 50% of marketable losses in apple. 
Bitter pit has been associated to Ca deficiency or its relation to other nutrients at a cellular level 
(Marschner, 2002). According to De Freitas and Mitcham (2012) environmental conditions can impact 
the development of the disease in genetically susceptible varieties. Successful practices include vigor 
management (through water, nitrogen or crop load), fruit size, and adequate nutrient balance in soils 
(De Freitas and Mitcham, 2012, Sió et al. 1999). However, these practices have not always worked in 
all growing conditions. As a preventive measure, growers spray Ca products, in some cases twice a 
week during the growing season. Even such an aggressive approach does not always translate in bitter 



pit reduction. PI Sallato is currently leading a WSDA – Specialty crop block grant in collaboration with 
Kalcsits and Whiting to identify root growth management practices to reduce Ca related disorders such 
as bitter pit. Preliminary data suggest that limiting factors that can lead to bitter pit vary between 
orchards, and need to be evaluated and diagnosed at a block level. Most limiting factors have been 
associated to soil water movement, excess nutrient levels of potassium leading to nutrient imbalance, 
high vigor and lack of Ca in excessively drained soils. Thus, the ability to monitor and manage water, 
nutrient and tree vigor at a tree to tree basis, especially under variable soil conditions, can reduce crop 
losses due to bitter pit, while reducing the excessive spraying of Ca.  

Soil, canopy and weather monitoring:  Weather is one of the major uncertainties affecting the 
management and performance of agricultural systems, and methods to mitigate weather risk have been 
a focus in the scientific community over the past two decades (Barros et al., 2012; Gobin et al., 2013; 
Ranjan et al., 2020). This is particularly relevant to perennial specialty crop producing regions in the 
U.S. and to WA State, which rank # 1 in several fresh market tree fruit crops (e.g. apple, sweet cherry 
and pear) production (USDA NASS, 2017). Tree fruit growers rely extensively in weather stations to 
predict disease and pest infection probability in their orchards and to program their spray applications. 
Fire blight has been identified as the most harmful disease in apples (Gaganidze et al., 2018) with losses 
of $100 million USD annually (Norelli et al., 2009). The disease, caused by the bacteria Erwinia 
amylovora can be spread by rain, insects, agricultural tools (Johnson and Stockwell, 2000). Standard 
management practices rely on weather station prediction of favorable conditions for the disease 
development in relation to susceptible tree stages, monitoring and timely removal of blighted trees or 
branches and frequent sprays. Monitoring requires skilled workers driving up and down the rows to 
observe and spot diseased trees, to reduce the spreading. Because higher air moisture levels and warm 
temperatures (above 60 °F), favor bacteria development (Johnson and Stockwell, 2000), growers opt 
to cut the water during bloom time, which can affect tree vigor, fruit development and size. Excessive 
vigor has also been associated to increased susceptibility. Growers have strongly expressed their 
interest to utilize sensors and aerial imaging to help monitor conditions, disease development and to 
guide management practices (shoot removal, sprays, water and nutrient management).  

Overall, vigor variability and vigor management within the orchard has numerous impacts on 
labor needs, automation potential, fruit quality, spray coverage, fertilizer use. For example, weak trees 
are associated with nitrogen deficiency, leading to nitrogen application as an instinctive solution. PI 
Sallato evaluated 97 apple blocks in 2019 and observed that lack of vigor in apple orchards in the 
Yakima and Columbia Basin region were related to water management, infiltration or drainage and the 
presence of a calcium carbonate layer, prominent in many soils in the Yakima valley, rather than lack 
of nitrogen supply. None of these tree growth stunting conditions can be solved by nitrogen 
applications. Thus, accurate sensing technology can help with adequate orchard diagnostic to reduce 
fertilizer waste, nitrogen leaching, spray needs, while improving tree health, vigor and ultimately fruit 
quality.      

Internet of Things in Agriculture and Related:  Precision farming is key to attaining sustainable 
development of agriculture and addressing food security at a global scale. Wireless Sensor Networks 
(WSNs) are an integral component of precision farming and have previously been applied to precision 
irrigation (Kim et al., 2005; Zhou et al., 2009; Greenwood et al., 2010; Zhang et al., 2011; Casdesus 
et al., 2012; Coates et al., 2013; Dong et al., 2013; Gutiérrez et al., 2014; Nikolidakis et al., 2015), 
biotic and abiotic stress management (Das et al., 2009; Liao et al., 2013; Datir and Wagh, 2014; 
Tripathy et al., 2014), and crop micro-climate analysis (Morais et al., 2008; Tripathy et al., 2014; 
Ranjan et al., 2020). 

Internet of Things (IoT) primarily encompasses the concept “connect everything and everyone 
everywhere to everything and everyone else” (Atzori et al., 2010). IoT, as an extension of WSNs, are 
bring effectively deployed for providing intelligent solutions for smart concepts such as e-health, e-
home, and smart farms (Akyildiz et al., 2005; Son et al., 2006; Kun-kun et al., 2013; Gent, 2014; Maia 



et al., 2014; Ramamurthy and Serrat, 2014; Sebestyen et al., 2014; Fadi et al., 2015; Vasisht et al., 
2017; Tzounis et al., 2017). The agriculture sector could similarly benefit from IoT technologies by 
enabling an optimization of crop inputs amidst the high variability of in-field conditions. This can be 
achieved by making machines smart enough to undertake timely management decisions without human 
interference. The use of WSNs for precision farming is primarily limited by long-distance data 
transmission and initial costs (Aldabbagh et al., 2015). Various efforts from our group and others have 
used WSNs for real-time measurement of micro-climate parameters (Stafford et al., 1989; Walker et 
al., 2004; Phillips et al., 2014; Werner, 2015; Chandel et al., 2018; Ranjan et al., 2020). WSNs now 
collect sensors data which is then sent to a control unit wirelessly (Srbinovska et al., 2015; Ranjan et 
al., 2020). Most of these WSN applications consist of a dense network of sensor nodes distributed 
throughout the field. However, existing WSNs have been designed for doing a specific thing or two 
and do lack scalability and wider compatibility to realize the full-scale adaption and utilization by 
growers to manage orchard inputs through one ecosystem.   
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