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Budget 1  

Primary PI: Joseph Davidson 

Organization Name: Oregon State University/Agricultural Research Foundation  

Contract Administrator: Charlene Wilkinson 

Telephone: (541) 737-3228    

Contract administrator email address: charlene.wilkinson@oregonstate.edu 

 

Item 2020 2021 2022

Salaries $31,331.00 $32,271.00 $26,622.00

Benefits $8,311.00 $9,206.00 $8,162.00

Wages

Benefits

RCA Room Rental

Shipping

Supplies $2,986.00 $4,000.00 $4,000.00

Travel $3,000.00 $3,000.00 $3,000.00

Plot Fees

Miscellaneous

Total $45,628.00 $48,477.00 $41,784.00  
 
1Salaries include a Graduate Research Assistant on a 12-month, 0.49 FTE appointment in years 1 and 2, and a 9-

month, 0.49 FTE appointment in year 3. Salaries also include 0.25 months per year for Joe Davidson and Cindy 

Grimm.  
2Leaf samples are included in the supply budget.  
3Travel budget is requested to support mileage and lodging for data collection and field experiments. 
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Budget 2  
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Wages
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RCA Room Rental

Shipping

Supplies $4,000.00 $4,000.00 $4,000.00

Travel $1,000.00 $1,000.00 $1,000.00

Plot Fees

Miscellaneous

Total $27,941.00 $28,858.00 $29,812.00  
 
1Travel budget is requested to cover the mileage for field experiments. 
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Introduction: The standard practice of broad-acre orchard management does not result in targeted 

actions that are optimal for individual trees – this reduces the impact of management decisions and 

wastes resources while falling short on achieving the yield and quality potential of individual blocks. 

Our team’s overall goal was to improve fruit quality and yields by managing individual trees 

through a combination of automated sensing, learning algorithms, decision support tools, and 

precision application with variable rate technology. While for this project we focused on matching 

nitrogen (N) fertilizer to N demand, our long-term vision is to extend this framework for farming at the 

tree level to other orchard management decisions (e.g. plant growth regulators, root pruning, tree 

pruning, chemical thinning). The conceptual framework that we developed for precision N application 

is shown in Fig. 1 and included the following sequence of activities: 

1. Build a site map of individual trees (performed once at the beginning of the project) 

2. Use non-contact sensing to estimate tree nutrition (performed annually) 

3. Recommend tree-specific fertilization plans using decision support tools incorporating 

machine learning 

4. Apply variable rate N using real-time vehicle localization and precision technology 

5. Use historical data to improve the performance of the decision support tool 

 

Figure 1. Project framework. A detailed tree map was developed for the site at the beginning of the project. 

Raw sensor data on various orchard parameters was used as input to a learning algorithm that provides 

precision fertilization plans. Onsite vehicle localization was used to execute precision application of 

nitrogen. Historical data on destructive leaf N measurements, horticultural measurements, harvest yields, 

etc. was used to tune the learning algorithm. 

To implement the framework shown in Fig. 1, we created the following 3 specific research objectives: 

1. Develop a ground vehicle-mounted sensor system that i) maps the geographic location of 

individual trees within an orchard block; and ii) measures plant parameters (e.g. shoot vigor, 

trunk cross-sectional area, and fall leaf color) to estimate the N status of individual trees 

2. Develop a decision support tool that recommends N application levels per tree and tracks the 

tree’s long-term response 

3. Develop and demonstrate a proof-of-concept precision spray system that localizes the vehicle 

with the orchard map, identifies the neighboring trees, and then selectively applies the desired 

level of N within the root zone 
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This final report summarizes research results over the performance period of January 2020 – November 

2023. The most significant findings from the project include the following: 

• Trees in the test plot used for the long-term study were more likely to have excess leaf N than 

be N-deficient.  

• Consumer grade RGB-D sensors and state-of-the-art deep learning models can be used for 

automatic measurement of trunk cross sectional area.  

• Normalized canopy area is highly correlated (negatively) to the target N application rate for the 

upcoming season. The use of normalized canopy area as a measure of canopy vigor and an 

indicator of the N need of individual trees is promising.  

• The yellowness index of a tree at different weeks and the pattern in which they are changing 

can be a potential indicator of the N status in the tree. Also, weeks 3-4 can be a good time to 

differentiate between high N and low N trees as the trees with low N start to change color. 

• Trunk width can be used to precisely localize a robot within an orchard without the need for 

GPS. 

Objective 1: Orchard mapping & nitrogen sensing 

Task 1 – Tree trunk detection (OSU lead, WSU participant) 

We created a method that uses an RGB-Depth camera (Intel RealSense D435) to automatically calculate 

trunk width, which is needed for robot localization and is also an indicator of tree nutrition. The first 

step to estimate trunk width is to pass the RGB image through an image segmentation model (Deep 

Neural Network) that determines where the trunk is in the image. The depth image can then be used to 

determine the distance between the trunk and the camera, which is used to calculate the width of the 

tree. 

Instance segmentation: The segmentation model we adopted was YOLOv8. To train it, 1090 images 

from the Jazz test block (Yakima Valley Orchards, Prosser, WA) were labeled with post and tree 

classes. Images from multiple seasons were included to increase model robustness (e.g. dormant season, 

bloom, and shortly before harvest). The segmentation model performs best when it is used in the test 

block with the camera positioned similarly as in the training images. Thorough tests were not conducted 

for other camera positions or in other orchards, but preliminary findings show that its performance 

notably diminishes. However, training a new segmentation model for images taken from an alternate 

perspective, or from a different orchard, is relatively simple and very easy to swap out in the width 

estimation pipeline. Figure 2(left) shows an example of the segmentation. Processing time was 14.6ms 

per image on our test computer. 

 

Figure 2. (Left) A typical segmentation of an image with a post and trunk. (Right) the width calculation 

method. The pink lines are the left and right sides of the object, the blue lines are the centerlines, the red 

lines are the initial width predictions, and the green lines are the corrected widths. The width is shown at 

three locations for illustration purposes. 
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Width estimation: Once a trunk or post has been found in 

the image, we use the aligned depth image to calculate its 

width. First, the distance to the trunk is found by taking the 

median depth to the trunk. Next, we calculate an initial 

estimate of width in pixels by finding the distance between 

the right and left most pixels of the trunk for each row of the 

image. However, this estimate is only accurate if the trunk 

is perfectly vertical, so the width must be adjusted based on 

the angle of the trunk in the image. To do this, the center line 

of the trunk is approximated as the point between the 

rightmost and leftmost point, and then the local angle of the 

trunk is found by calculating the angle between every 15th 

pixel along the centerline (Figure 2(right)). We then 

multiply the width by the sine of the local angle to correct it 

and use the 40th percentile width as the width estimate. 

Finally, there is a final correction based on the proximity of 

the trunk with the edge of the image. We observed that 

widths for trunks near the edge of an image are 

overestimated, due to distortions in the camera, so we 

developed a regression model to correct for this effect. The 

performance of the final system vs. ground truth human 

measurements is shown in Figure 3. Mean absolute error was 

2.56mm with a standard deviation of 2.39mm. Average 

processing time to calculate the width was 37.2ms.  

Task 2 – Orchard mapping (OSU lead, WSU 

participant) 

At the beginning of the project, we created an accurate map 

of the orchard test block. To create the map, we installed both 

an RTK GPS (elevated to the top of the canopy on a boom) 

and an RGB-D camera (mounted on the side) on a utility 

vehicle and collected data while driving through each row of 

the site. The data was then postprocessed to create an initial 

map using our image segmentation pipeline and the GPS 

recordings. Some corrections had to be made manually, 

primarily due to either poor image segmentations or errors 

when matching trunks between successive images from the 

video stream.  Figure 4 shows the final corrected map of the 

orchard test block. The 200 treatment trees that we used for 

long term studies are shown within the map. 

Task 3 – Nitrogen measurements and non-contact 

sensing (WSU lead, OSU participant) 

We collected leaf samples for the 200 test trees each of the 4 

years of the project. Figure 5 shows the results of the mineral 

analysis. In general, the treatment trees had excess leaf 

nitrogen as opposed to too little, and the nitrogen status 

appeared to remain relatively consistent year to year.  

Figure 4. Corrected map of orchard test 

block. 

Figure 3. The predicted vs. ground truth 

measurements for 224 trees using our 

width measurement system. 
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Figure 5. Leaf nitrogen percentage of test trees for 2020-2023. The location of the dot for each treatment 

tree corresponds to its actual position in the orchard and the size and color correspond to the leaf nitrogen 

content. 

Normalized Canopy Area Estimation 

Methods: The dataset for this study 

was collected during the end of the 

growing season (late July to early 

August) in 2021, 2022, and 2023 

using a commercial Zed2i sensor 

mounted on a ground vehicle (Fig. 

6). The camera was positioned 

approximately 7.5 ft above ground 

and 5.0 ft from the tree trunk so that 

the entire canopy was visible in 

individual frames. The vehicle was 

driven straight in between the tree 

rows, maintaining an approximately 

constant distance between the 

camera and the trees.  

After extracting the colored point 

cloud of the desired frames with the 

test tree, all points with missing 

depth information (which could be 

caused by occlusion or other sensor 

limitations) were removed followed by color, depth, and height thresholding to remove points from the 

ground, background, and sky. The point cloud at this step was still noisy, and therefore a radius-based 

outlier removal technique was used to remove one or a small group of points that were not within a 

specific distance from the rest of the points in the point cloud. A radius of 20 mm and a total number 

of points of 50 were used as thresholds to implement this technique using the open3D library, which 

meant that if there were 50 or fewer points in a spherical neighborhood of 20 mm radius, those were 

removed from the point cloud. After the radius-based outlier removal, a camera-axis-aligned bounding 

box was fitted to the point cloud. The bounding box was set to an overall height of 3.5 m, a width of 

Figure 6. Data collection setup that includes a utility vehicle with 

Zed2i camera (Stereolabs, France) for image acquisition. The 

camera and its axes are zoomed in on the right. 
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1.2 m, and a depth of 1.6m. This bounding box ensured that the sample tree was positioned inside the 

box and that the box size remained the same for all the trees used in this study. The close spacing of 

trees in the high-density orchard makes it difficult to delineate the boundaries of individual trees. By 

considering the overall width of 1.2m (4ft) (which is the spacing between trees), we can safely assume 

that the foliage from the neighboring trees does not significantly affect the calculation of the normalized 

canopy area of the trees. The segmented point cloud was then projected back to a 2D color image using 

the indices of the points in the point cloud to obtain the segmented foreground tree image.  

To assess the performance of the canopy segmentation technique, the original RGB images for 20 

individual tree canopies were manually annotated and compared against the results of the automated 

segmentation system. The outer boundary of the manually annotated tree canopies was outlined with 

red, and the holes within the outer boundary of the canopies were outlined with blue (Fig. 7a). The area 

covered by the outside and inside boundaries was then subtracted to get the total mask (and area in the 

number of pixels) for the target tree canopies. The canopy areas of individual trees segmented by the 

proposed algorithm were then compared against the area calculated with the manual annotation (Fig. 

7b). The performance of the segmentation algorithm was then evaluated using the Precision, Recall, 

and F1 matrices as defined by equations 1, 2, and 3, respectively. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 ÷  (𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 +  𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)   (1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 ÷  (𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 +  𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)    (2) 

𝐹1 =  2 ∗  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙 ÷  (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙)     (3) 

 

  (a)            (b)  

Figure 7. a) Manually annotated canopy boundary of a sample tree; the red line represented the outside 

boundary, and the blue lines represented the holes within the overall canopy boundary; b) Segmentation 

results (yellow) on top of the manually annotated (blue) canopy of the sample tree. White-colored regions 

represented portions present in both. Sections AA-1 and AA-2 represented the manual annotation and 

automated segmentation masks for section AA. 

The segmented image obtained in the previous step was then used to create a binary mask for the target 

trees. A rectangular bounding box was fitted outside the binary mask of the segmented tree, which gives 

the maximum area the canopy could cover. The normalized canopy area was then calculated inside the 
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bounding box using equation 4, which measures how much of the total possible area of the tree is 

covered by the actual canopy.  

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐶𝑎𝑛𝑜𝑝𝑦 𝐴𝑟𝑒𝑎 = 𝑃𝑖𝑥𝑒𝑙𝑠 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 𝑏𝑦 𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛 ÷  𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠     (4) 

The normalized canopy area was then correlated with the N application rate recommended by 4 experts 

based on their assessment of tree vigor. The experts were requested to evaluate the trees and recommend 

a N application rate on a scale of 0-50 lbs per acre (0 – 56 kg/ha) at an increment of 10 lbs per acre. 

Two of the experts were growers/orchard managers and were directly involved in orchard management 

for more than 30 and 15 years, respectively. The other two were from academia and were involved in 

research, education, and outreach on tree fruit physiology, including nutrition management. The experts 

independently evaluated the trees after harvest in the same season, as per their availability, before the 

trees started losing leaves to ensure that the canopy growth from the current season was still completely 

visible. These experts qualitatively assessed the trees in terms of their vigor (e.g., shoot growth, canopy 

area) and any other apparent factors (e.g., trunk diameter) they would use in their day-to-day decision-

making and incorporated their experience to recommend a N application rate. A higher N application 

rate means the experts found the trees to have lower vigor than desired for target fruit yield and quality 

and vice versa. A sub-sample of 55 trees from a total of 199 treatment trees was chosen randomly for 

the experts’ evaluation.  

Results & Discussion: A normalized confusion matrix 

was created to qualitatively assess the performance of 

the segmentation method (Fig. 8). In this case, false 

negatives are foreground pixels classified as 

background, and false positives are background pixels 

classified as foreground. True positives and true 

negatives are correctly classified foreground and 

background pixels. The algorithm achieved a precision 

of 0.79, recall of 0.77, and an F1 score of 0.78 and was 

able to segment the foreground tree properly. These 

results suggest that parts from the ground, background 

rows, and neighboring trees were properly removed 

from the analysis with minimal errors.  

A generally linear relationship existed between the 

normalized canopy area and the experts’ N 

recommendation (Fig. 9). A correlation coefficient of -

0.86, -0.84, -0.96, and -0.78 was obtained between the 

normalized canopy area and the N application recommendations provided by Experts 1, 2, 3, and 4, 

respectively. The high negative correlation coefficients among the experts showed that the normalized 

canopy area is highly correlated (negatively) with the target nitrogen application rate for the upcoming 

season. The results also indicate that the use of normalized canopy area as a measure of canopy vigor 

and an indicator of the nitrogen need of individual trees is promising. 

 

Figure 8. Normalized confusion matrix 

comparing the automated canopy 

segmentation with the manually segmented 

ground truth canopies. 
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Figure 9: Relationship between normalized canopy area and N application level recommended by (Top 

left) Expert 1, (Top right) Expert 2, (Bottom left) Expert 3, and (Bottom right) Expert 4. The red line shows 

the regression plot for the expert nitrogen recommendation level and the median normalized canopy area 

at each recommendation level for each expert. 

Temporal leaf color assessment 

Methods: Another parameter of interest is the temporal change in leaf color during the fall. For this 

study, we collected images of the leaves' color change from green to yellow over 6 weeks starting on 

October 8, 2021 (the leaves froze before showing any color change in 2022, and more data is being 

collected in 2023). Figure 10 shows the data collection setup and color during the different weeks of 

the study for one of the sample trees. The point cloud obtained from the camera was thresholded using 

color and depth thresholds and downsampled uniformly at a 10:1 ratio. The downsampled point cloud 

was then clustered using a hierarchical clustering technique on the CIE-L*a*b color space. A 

hierarchical K-means clustering was used to first group the points into 20 clusters. A threshold in both 

a* and b* spaces for the group centers was applied to merge the classes into 3 final clusters: Yellow, 

Green, and Trunk. The Yellow cluster included the foliage that had turned yellow, the Green cluster 

included foliage that was still green, and the Trunk cluster included the remaining points from the trunk, 

branches, some brown leaves, and soil from the background (and the leaves that had turned red on a 

few trees). The final output from the clustering algorithm included three clusters: Green cluster (cg), 

Yellow cluster (cy), and Trunk cluster (ct). Figure 11(left) shows the result of the clustering technique 

for one of the sample trees where yellow, green, and trunk clusters belong to cy , cg , and ct respectively.  

After the grouping of points into 3 clusters/classes, the Yellow (𝑐𝑦) and Green (𝑐𝑔) classes were used to 

calculate the yellowness index of each tree, a metric that we defined to indicate what fraction of the 

foliage is yellow as compared to green. The yellowness of each tree was calculated using equation 5. 

𝑌𝑒𝑙𝑙𝑜𝑤𝑛𝑒𝑠 𝐼𝑛𝑑𝑒𝑥 =  (𝑦 − 𝑔) ÷ (𝑦 + 𝑔)           (5) 

where, y = number of pixels/points in the Yellow Cluster, 𝑐𝑦 and g = number of pixels/points in the 

Green Cluster, 𝑐𝑔. 
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Figure 10: Data collection setup and color change during the six weeks of the study. 

 

Figure 11: (Left) Segmented point cloud and clustered point cloud (i.e. Green, Yellow, and Trunk cluster) 

of a sample tree. (Right) Yellowness for all trees during different weeks of study. 

Results & Discussion: The yellowness index of each tree was calculated over the 6 weeks of the study. 

Figure 11(right) shows a plot of yellowness for all trees during the 6 weeks. The results show a general 

trend of yellowness increasing with each week (i.e. trees turning more yellow), as expected. The 

boxplot shows that all trees start out at a yellowness index of ~-1 during the first week (i.e. all trees 

were completely green). However, at week 3 there is an increase in the yellowness index. At week 4, 

the change is more prominent where there is a significant increase in yellowness index. By week 6, 

most of the trees have a high 𝑦𝑒𝑙𝑙𝑜𝑤𝑛𝑒𝑠𝑠 value (i.e. they are almost through the complete color change 

and have turned yellow). However, there are still some trees with a negative yellowness index (i.e. still 

on the greener side). 

The trees were classified into 5 classes of N status: Very low N (𝑁 < 1.7), Low N (1.7 < 𝑁 < 2), Good 

N ( 2 < 𝑁 < 2.4), High N ( 2.4 < 𝑁 < 2.6), and Very high N (𝑁 > 2.6). Figure 12 shows the yellowness 

values by week with a color code assigned to trees from the different N classes. Trees with lower N 

start the transition earlier in the season. At week 4, this is more clear as the trees with lower N start the 

transition to yellow. However, most of the higher N trees are still towards the greener side. At week 6, 

most of the lower N trees are already at yellowness index of +1 (i.e., completely yellow), however, 

there are still quite a few higher N trees transitioning color. This transition is affected by several factors 

including environmental stress, nutritional stresses, and aging. The results show correlation between 

the yellowness index and the N content at different weeks (𝑅2 = 0.14 – 0.18) and indicate that the 

yellowness index of a tree at different weeks and the pattern in which they are changing can be a 
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potential indicator of the N status in the tree. Also, weeks 3-4 can be a good time to differentiate 

between high N and low N trees as the trees with low N start to change color. 

 

Figure 12: Yellowness during different weeks of the study for trees with different nitrogen levels. Week 1 

started on October 8, 2021. 

Objective 2: Decision support tool (WSU/OSU joint lead) 

Methods: The parameters discussed above were used in the decision support tool to decide the 

fertilization rate for individual trees. A simple gradient boost regressor was used to fit a model to predict 

the leaf N concentration using the trunk cross-sectional area and normalized canopy area as input. The 

predictions were further classified into 5 classes: 5 - Very low N (𝑁 < 1.7), 4 - Low N (1.7 < 𝑁 < 2), 3 

- Good N ( 2 < 𝑁 < 2.4), 2 - High N ( 2.4 < 𝑁 < 2.6), and 1 - Very high N (𝑁 > 2.6) based on their 

predicted leaf N concentrations. The model was trained on 50% of the data from 2022 and tested on the 

rest of the data from 2022. A proportional quantity of fertilization was calculated based on the 

classification of the trees (i.e. tree with class 1 targeted with a rate of 10 lbs/acre, and a tree with class 

5 targeted with a rate of 50 lbs/acre by varying the volume of liquid sprayed around the tree).  

Results & Discussion: The model was able to predict the leaf N concentration with an RMSE of 0.32%. 

With this level of RMSE, the predicted classes of the target trees are expected to be within one class 

(one class higher or lower). The current model for decision support is expected to be further improved 

with the integration of fall leaf color, the yield from previous years, and experts' rating as feedback to 

the system.  

Objective 3: Variable rate N application  

Task 1 – Vehicle localization (OSU lead, WSU participant) 

Methods: To accurately apply N autonomously based on visual tree metrics, it's essential to identify 

the specific tree being examined, ensuring the data corresponds to the correct tree. This was 

accomplished by localizing the ground robot (Clearpath Warthog) on a pre-made map of the orchard 
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using a particle filter system. Particle filters localize by first scattering a large number of potential 

position estimates (i.e. the particles) across the map. Then, as more data from the environment is 

captured while the robot traverses, including RGB-D images of trunks and wheel odometry, the 

algorithm uses probability theory to update predicted positions until only one position estimate remains. 

For brevity, we do not present the details of the algorithm in this report. Figure 13 shows a graphical 

depiction of the multiple stages of the algorithm. 

 

Figure 13. Graphical depiction of four stages of the particle filter system. In the map, posts are red dots, 

treatment trees are large blue dots, other trees are green dots, particles are small blue dots, and the final 

position estimate is a large purple dot. The left image shows the initial spread of the particles. The next 

image shows the system once a single tree has been seen. The third is after several trees have been seen. In 

the right image the particles have converged (purple dot). 

Results & Discussion: The localization system was tested in real time in the field and shown to perform 

well. Localizing in an orchard is difficult primarily since everything looks very similar: the trees all 

look the same, are similarly spaced, and are in straight rows. The addition of the width as a metric for 

calculating the probability of the particles aids in reducing this ambiguity, but it’s still a challenge. On 

the other hand, once the robot has converged on the correct general location, the error in the localization 

is largely a product of the accuracy of the camera system, the accuracy of the transform between the 

camera and the robot, and the accuracy of the map. To this end, most of our analysis focused on whether 

the algorithm converged correctly and how long it took to converge, for various sized initial spreads of 

particles. 

To evaluate the system’s performance, we tested 3 different sizes of spread in the field, conducting 

approximately 20 trials for each (see Table 1). Each trial started at a unique location on the map. For 

clarity, the spread height and width indicate the size of the initial spread; for instance, the example in 

Figure 13 has a width of 4 m and a height of 20 m. The 'distance to converge' metric is how far the 

robot traveled before the system converged. It's evident from our trials that there was a large variation 

in convergence time and distance, as indicated by the large standard deviation, but as one would expect, 

larger initial spreads result in longer convergence times and reduced convergence accuracy. The particle 

system converged to the correct location 90% of the time even when the initial spread was large. 

Table 1. Results for the particle filter trials. The spread width and height give the initial spread area, the 

correct convergence gives the % of trials that converged correctly. The time to converge is how long it took 

the system to converge, and distance to converge is how far the robot traveled before the system converged. 

Spread width (m) 3 4 12 

Spread height (m) 10 20 20 

Num. trials 21 21 32 

Correct convergence (%) 95.2 90.5 90.6 

Avg. time to converge (s) 16.19 +/- 10.47 18.73 +/- 9.69 25.39 +/- 8.66 

Avg. distance to converge (m) 3.99 +/- 2.62 5.16 +/- 2.73 7.17 +/- 2.67 
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Task 2 – Precision spraying (WSU/OSU joint lead) 

Methods: The N application rate recommended by the decision support system was administered 

through an automated system capable of self-localization within the orchard. The main platform for the 

integrated system was a Clearpath Warthog ground robot as shown in Fig. 14. A 25-gallon reservoir 

was mounted on top of the ground robot to store the liquid solution to be sprayed (the system was tested 

with water in field trials). The solution was then applied with an 80o flat-fan spray nozzle (TeeJet 

Technologies, Illinois, USA) and 12V solenoid valve (TeeJet Technologies, Illinois, USA) that was 

attached to the ground robot at an angle of 20o with the robot body, oriented towards the root zone of 

the trees. The solenoid valve was actuated with a microcontroller. The front-facing 2D LiDAR (Sick 

LMS 111-10100 (Sick AG, Waldkirch, Germany)) was used to capture a laser scan in front of the robot 

to control its motion and ensure safe operation. The side facing Realsense D435i (Intel Corp., CA, 

USA) was used to detect trees while the platform was moving. The LiDAR, Realsense D435i camera 

and Arduino were connected to a Jetson Nano (NVIDIA Corp., CA, USA) on the Warthog. Both the 

Jetson Nano and the Warthog computer were connected to a common network via an ethernet switch 

(TP-Link Tech. Co., China). The entire system can be accessed through the network switch or wireless 

router connected to the switch. The spray line was pressurized at 40 psi with a pressure regulator and 

relief lines. Two 12V batteries were connected to power the pump for spraying and actuating the 

solenoid valve, while the Warthog was powered with rechargeable lithium batteries. The integrated 

system was self-contained with all power required for running the equipment on-board. 

 
Figure 14: The integrated system: a) from front and b) from back. The front-facing LiDAR and the side-

facing camera are visible in a), while the spraying nozzle has been zoomed in on b). The yellow tank on top 

contains the spray solution. 

Results and Discussion: The integrated system accurately sprayed a quantity of liquid, as decided by 

the decision support system, directly onto the root zone of the trees. The integrated system 

accomplished the following tasks: i) Autonomous navigation within a row in the orchard, ii) Detection 

of trees and localization in the orchard, and iii) Precise application of the designated N amount to the 

tree's root zone. The overall system integration was implemented using Robot Operating System (ROS). 

These tasks were run on multiple computers connected to the same network through the network switch 

and communicating with each other in real-time through ROS.  

i) Autonomous Navigation Node: The autonomous navigation system was able to identify the left and 

right tree lines based on the incoming laser scans by fitting a least square fit line to the points on the 

left and right. The center line was the average of the right and left lines (Fig. 15). The heading and 

position of the robot were identified using the orientation of the center line. Angular velocities were 
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controlled to maintain a constant distance of 0.1m to 

the left of center and oriented parallel to the orchard 

rows with a constant linear velocity. The system was 

set to observe 5m in front of the robot.  

ii) Localization Node: The localization system, as 

discussed in Task 1 of Objective 3, was used in the 

integrated system to identify the position of the ground 

robot with respect to the trees on the map. The 

localization node identified the tree trunk and 

estimated its diameter in real time, which was used as 

an input for the decision support system to decide the 

amount of liquid to be sprayed on each treatment tree.  

iii) Sprayer Node: A proportional amount of fertilizer 

based on the classification result from the decision 

support system was applied to the test trees. The 

decision support system took as input the real-time diameter estimation from the localization node and 

normalized area for the corresponding tree from the 2023 data that was calculated in early August (the 

system was tested in late October). The spray was actuated for a time proportional to the required 

volume of spray as would be required for a solution with water-soluble 20% N fertilizer diluted at 1 lb 

of fertilizer per liter of water. The flow from the spray nozzle was calibrated using a measuring cylinder 

with different volumes. The calibration model allowed for obtaining a precise volume output from the 

spray nozzle within 5 ml. The nozzle remained off until it reached the test tree and actuated at 5 different 

distances from the test tree based on the required volume, which was proportional to its N requirement. 

The spray time was calculated based on the flow from nozzle, the desired concentration of fertilizer in 

the solution, and the linear velocity of the robot to uniformly apply the solution to the test tree. The 

spray area of the system was tested using two 4ft wide paper rolls spread 2 ft to the left and 2 ft to the 

right from the tree trunk (Fig. 16). To make the spray area visible, water-soluble food coloring was 

added to the water. 

 
Figure 16: Paper roll spread out in front of the tree a) before spraying and b) after spraying. The red color 

on the paper shows the sprayed area.  

Results & Discussion: The system was able to: correctly center itself in the row, autonomously 

navigate within the rows, precisely localize within the orchard, and spray the solution at desired 

locations around the test trees. The sprayer was able to target the spray within an area of 4ft of the target 

trees on the sides and 1.5 ft on the front of the trees, which was within the root zones for the target 

trees. The video of the overall system operating in the field can be found by clicking the link.  

  

Figure 15. An instance of the laser scan (red 

dots) and the fitted line for left and right rows. 

The green lines show the fitted line for left and 

right tree rows, and the blue line shows the 

center line. 

https://drive.google.com/file/d/1zib31saa8HSp5ht6cPkNCy4bSHYab3aX/view?usp=sharing
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Executive Summary 

Project title: Decision Support Tool for Precision Orchard Management 

Key words: Precision fertilization, variable rate technology, computer vision, deep learning 

Abstract: The standard practice of broad-acre orchard management does not result in targeted actions 

that are optimal for individual trees – this reduces the impact of management decisions and wastes 

resources while falling short on achieving the yield and quality potential of individual blocks. The 

primary goal of this project was to improve fruit quality and yields by managing the Nitrogen (N) of 

individual trees through a combination of automated sensing, machine learning, decision support tools, 

and variable rate application technology. To accomplish our goals, we created three specific research 

objectives: 

1. Develop a ground vehicle-mounted sensor system that i) maps the geographic location of 

individual trees within an orchard block; and ii) measures plant parameters (e.g. shoot vigor, 

trunk cross-sectional area, and fall leaf color) to estimate the N status of individual trees 

2. Develop a decision support tool that recommends N application levels per tree and tracks the 

tree’s long-term response 

3. Develop and demonstrate a proof-of-concept precision spray system that localizes the vehicle 

with the orchard map, identifies the neighboring trees, and then selectively applies the desired 

level of N within the root zone 

Over the duration of the project we collected leaf samples from 200 treatment trees within the test block 

(Jazz cultivar; Yakima Valley Orchards, Posser, WA). Mineral analysis showed that most treatment 

trees had excess leaf N as opposed to too little and that N status remained relatively consistent year to 

year. To automatically detect trees and estimate trunk cross sectional area, we used a consumer grade 

RGB-Depth sensor and deep learning. Compared to manual measurements with calipers, the mean 

absolute error of the trunk width estimation algorithm was 2.56mm. The deep learning algorithm was 

then used in conjunction with RTK-GPS to create an accurate map of all trees and posts within the test 

block.   

To estimate tree nutrition with non-contact visual sensing, we created new techniques that measured 

canopy area and temporal changes in leaf color. We found that normalized canopy area is highly 

correlated (negatively) with the target N application rate for the upcoming season (based on human 

expert guidance). The use of normalized canopy area as a measure of canopy vigor and an indicator of 

the N need of individual trees is promising. Also, the yellowness index of a tree at different weeks and 

the pattern in which they are changing can be a potential indicator of the N status in the tree. We 

observed that Weeks 3-4 can be a good time to differentiate between high N and low N trees as the 

trees with low N start to change color. 

Our final contribution of the project was an in-field demonstration of autonomous variable rate 

application with a ground robot. Using a particle filter system that incorporated the orchard map and 

trunk segmentation algorithm, the robot was able to quickly and accurately localize with respect to 

individual trees without the need for GPS. A decision support tool incorporating a simple gradient boost 

regressor was used to determine the fertilization rate for individual trees. The N application rate 

recommended by the decision support system was applied through an automated liquid spray system. 
The integrated system accomplished the following tasks: i) Autonomous navigation within a row in the 

orchard, ii) Detection of trees and localization in the orchard, and iii) Precise application of the 

designated N amount to the tree's root zone. The sprayer was able to target the spray within an area of 

4ft of the target trees on the sides and 1.5 ft on the front of the trees, which was within the root zones 

for the target trees. Future work will focus on using historical data (e.g. yields) to improve the decision 

support tool. 


